Electrospun Carbon Nanofiber Composite Electrode with Gradient Porous Structure for Rapid Ion Transport in an All‐Vanadium Redox Flow Battery

流动电池 氧化还原 材料科学 复合数 电极 电池(电) 碳纳米纤维 多孔性 碳纤维 化学工程 离子 纳米纤维 静电纺丝 纳米技术 无机化学 复合材料 化学 碳纳米管 聚合物 冶金 电解质 有机化学 物理化学 热力学 物理 工程类 功率(物理)
作者
Liying Wang,Yu Zhao,Dun Lin,Li Wang,Chenguang Liu,Pan Chu,P. Y. Leung
出处
期刊:Energy technology [Wiley]
标识
DOI:10.1002/ente.202400825
摘要

This study introduces a novel approach through the design and creation of a composite electrode, uniquely made of three distinct layers of micro/mesoporous electrospun carbon nanofiber (CNF) mats, featuring a gradient in pore size. This innovative gradient pore structure merges the benefits of varying pore sizes, significantly enhancing redox flow battery (RFB) efficiency. The first layer, a microporous CNF mat situated near the membrane, offers an extensive reactive surface area, minimizing charge transfer resistance and speeding up electrochemical reactions—key factors in enhancing battery reaction efficiency. The next layer, a mesoporous CNF mat, fine‐tunes the flow properties of the electrolyte, lowering flow resistance while ensuring superior charge transfer capabilities. This structured gradient in pore size not only facilitates improved electrolyte penetration and even distribution but also harmonizes the balance between charge transfer efficiency and electrolyte flow, thus mitigating energy losses without compromising reaction velocity. Charge–discharge testing demonstrated notable performance gains: an energy efficiency of 82% at 100 mA cm −2 (surpassing traditional electrodes by 71.5%) and 69% at 200 mA cm −2 , alongside a 77.4% increase in peak power density. This advancement not only enhances energy and power densities but also its lifespan, marking a significant step forward for RFB technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许子健发布了新的文献求助10
1秒前
852应助Chenzr采纳,获得10
4秒前
好运连连完成签到 ,获得积分10
4秒前
happy完成签到 ,获得积分10
5秒前
科研通AI5应助逆行的百合采纳,获得20
6秒前
麻辣修勾完成签到 ,获得积分10
8秒前
9秒前
9秒前
pengyh8完成签到 ,获得积分10
9秒前
10秒前
LSY完成签到 ,获得积分10
11秒前
会飞的猪qq完成签到,获得积分10
11秒前
晨晨lili完成签到,获得积分10
11秒前
13秒前
13秒前
15秒前
lizhongxin发布了新的文献求助10
16秒前
17秒前
ddddd发布了新的文献求助10
17秒前
17秒前
18秒前
lalala完成签到 ,获得积分10
19秒前
Come_On_luguo发布了新的文献求助10
19秒前
赘婿应助称心嫣娆采纳,获得10
19秒前
77发布了新的文献求助10
19秒前
curryif发布了新的文献求助10
20秒前
Akim应助八零采纳,获得10
20秒前
zys发布了新的文献求助10
20秒前
21秒前
ED应助lizhongxin采纳,获得10
22秒前
亿眼万年完成签到,获得积分10
23秒前
curryif完成签到,获得积分10
28秒前
28秒前
史淼荷发布了新的文献求助10
28秒前
28秒前
hyhyhyhy发布了新的文献求助10
29秒前
32秒前
科研通AI5应助Stting采纳,获得30
33秒前
淡定发布了新的文献求助10
33秒前
八零发布了新的文献求助10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531914
关于积分的说明 11255516
捐赠科研通 3270597
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190