A fast residual attention network for fine-grained unsupervised anomaly detection and localization

鉴别器 计算机科学 异常检测 残余物 人工智能 模式识别(心理学) 水准点(测量) 像素 无监督学习 编码器 算法 探测器 大地测量学 电信 操作系统 地理
作者
Najeh Nafti,Olfa Besbes,Asma Ben Abdallah,Antoine Vacavant,Mohamed Hédi Bedoui
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:165: 112066-112066
标识
DOI:10.1016/j.asoc.2024.112066
摘要

Unsupervised anomaly detection has gained tremendous momentum in medical applications, with Generative Adversarial Networks (GANs) playing a pivotal role in deep anomaly detection. However, GAN-based methods may not always be effective in accurately detecting anomalies especially at the pixel-level, where finer features are necessary for accurate localization. In this paper, we propose F-UNetGAN, a novel GAN-based fast residual attention network for fine-grained anomaly detection and localization in a fully unsupervised manner. Firstly, a novel U-Net-based discriminator architecture is introduced that enables the model to learn finer details of the input image by extracting low-level features, thereby enhancing its ability to output both global and local information. We define four variants of this new U-Net discriminator. Additionally, we incorporate an encoder network to the GAN model to facilitate fast mapping from images to the latent space. Moreover, we propose new cost functions to consider the new discriminator architecture, ensuring fine-grained anomaly localization. Specifically, we introduce a per-pixel consistency regularization technique using Mixup, which enhances pixel-level details by leveraging feedback from the U-Net discriminator. Furthermore, we integrate attention modules to capture spatial and channel-specific features, improving the identification of important regions and the extraction of more intricate features. We evaluate our method on a COVID-19 dataset and validate its generalization ability on four benchmark synthetic and medical datasets. Experimental results demonstrate that the proposed method achieves more accurate anomaly localization compared to other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助elever11采纳,获得10
1秒前
Hou完成签到,获得积分10
2秒前
俗签发布了新的文献求助10
2秒前
王女士完成签到,获得积分20
2秒前
3秒前
周哥发布了新的文献求助10
3秒前
Hello应助哎嘿采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
yana发布了新的文献求助20
5秒前
辜越涛发布了新的文献求助10
5秒前
肥肥发布了新的文献求助10
6秒前
光电效应完成签到,获得积分10
6秒前
才下眉头发布了新的文献求助10
6秒前
天天快乐应助李卓航采纳,获得10
6秒前
斯文静竹完成签到,获得积分10
7秒前
7秒前
7秒前
hlf发布了新的文献求助10
7秒前
深情安青应助悲凉的尔蓝采纳,获得10
7秒前
源缘完成签到 ,获得积分10
7秒前
luo发布了新的文献求助10
7秒前
大卫发布了新的文献求助10
8秒前
8秒前
彩色的凌旋完成签到,获得积分10
8秒前
9秒前
斯文败类应助水篇采纳,获得10
9秒前
ANHYPNIA完成签到,获得积分10
9秒前
9秒前
夏木子发布了新的文献求助10
10秒前
我是老大应助丙烯酸树脂采纳,获得30
11秒前
12秒前
优雅的化蛹完成签到,获得积分10
12秒前
陈阳发布了新的文献求助10
12秒前
孤独的一鸣应助Chambray采纳,获得10
12秒前
wodel发布了新的文献求助10
13秒前
raida发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059