A fast residual attention network for fine-grained unsupervised anomaly detection and localization

鉴别器 计算机科学 异常检测 残余物 人工智能 模式识别(心理学) 水准点(测量) 像素 无监督学习 编码器 算法 探测器 大地测量学 电信 操作系统 地理
作者
Najeh Nafti,Olfa Besbes,Asma Ben Abdallah,Antoine Vacavant,Mohamed Hédi Bedoui
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:165: 112066-112066
标识
DOI:10.1016/j.asoc.2024.112066
摘要

Unsupervised anomaly detection has gained tremendous momentum in medical applications, with Generative Adversarial Networks (GANs) playing a pivotal role in deep anomaly detection. However, GAN-based methods may not always be effective in accurately detecting anomalies especially at the pixel-level, where finer features are necessary for accurate localization. In this paper, we propose F-UNetGAN, a novel GAN-based fast residual attention network for fine-grained anomaly detection and localization in a fully unsupervised manner. Firstly, a novel U-Net-based discriminator architecture is introduced that enables the model to learn finer details of the input image by extracting low-level features, thereby enhancing its ability to output both global and local information. We define four variants of this new U-Net discriminator. Additionally, we incorporate an encoder network to the GAN model to facilitate fast mapping from images to the latent space. Moreover, we propose new cost functions to consider the new discriminator architecture, ensuring fine-grained anomaly localization. Specifically, we introduce a per-pixel consistency regularization technique using Mixup, which enhances pixel-level details by leveraging feedback from the U-Net discriminator. Furthermore, we integrate attention modules to capture spatial and channel-specific features, improving the identification of important regions and the extraction of more intricate features. We evaluate our method on a COVID-19 dataset and validate its generalization ability on four benchmark synthetic and medical datasets. Experimental results demonstrate that the proposed method achieves more accurate anomaly localization compared to other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助howl采纳,获得10
1秒前
阮通完成签到 ,获得积分10
3秒前
君衡完成签到 ,获得积分10
6秒前
6秒前
蓝天应助苏11采纳,获得10
6秒前
8秒前
13秒前
胖蛋蛋蛋发布了新的文献求助10
14秒前
16秒前
17秒前
tclouds完成签到 ,获得积分10
17秒前
HAHA发布了新的文献求助10
18秒前
11发布了新的文献求助10
21秒前
0923发布了新的文献求助10
23秒前
27秒前
儒雅的不愁完成签到 ,获得积分10
28秒前
28秒前
科研通AI2S应助yuzaidididi采纳,获得10
29秒前
30秒前
一颗糖完成签到 ,获得积分10
31秒前
zoes发布了新的文献求助10
32秒前
幸运的果子狸完成签到,获得积分10
32秒前
zm完成签到,获得积分10
34秒前
小刘小刘发布了新的文献求助10
35秒前
35秒前
所所应助LLL采纳,获得10
36秒前
无极微光应助zoes采纳,获得20
37秒前
乐乐应助wuyanan513采纳,获得10
38秒前
sskr完成签到,获得积分10
38秒前
科研通AI6.1应助芝麻开花采纳,获得10
39秒前
GXY完成签到 ,获得积分10
40秒前
Akim应助小刘小刘采纳,获得10
40秒前
41秒前
18318933768完成签到,获得积分10
41秒前
0923完成签到,获得积分10
42秒前
南雪既白完成签到,获得积分10
42秒前
小慧儿完成签到 ,获得积分10
42秒前
CipherSage应助科研通管家采纳,获得10
44秒前
44秒前
田様应助刘玄德采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868166
求助须知:如何正确求助?哪些是违规求助? 6438782
关于积分的说明 15657843
捐赠科研通 4983526
什么是DOI,文献DOI怎么找? 2687517
邀请新用户注册赠送积分活动 1630201
关于科研通互助平台的介绍 1588271