Intelligent fault diagnosis of multi-source cross-machine bearings based on center-weighted optimal transport and class-level alignment domain adaptation

判别式 域适应 计算机科学 领域(数学分析) 断层(地质) 代表(政治) 特征(语言学) 利用 模式识别(心理学) 学习迁移 人工智能 机器学习 数据挖掘 数学 数学分析 地质学 地震学 哲学 分类器(UML) 政治 法学 语言学 计算机安全 政治学
作者
Zhiwu Shang,Changchao Wu,Fei Liu,Cailu Pan,Hongchuan Cheng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 116206-116206
标识
DOI:10.1088/1361-6501/ad6c74
摘要

Abstract Most of the current domain adaptation research primarily focuses on the single-source or multi-source domain transfer constructed under different working conditions of the same machine. However, when faced with cross-machine tasks with significant domain discrepancies, forcing the direct feature alignment between source and target domain samples may lead to negative transfer, thereby reducing the model’s diagnostic performance. To overcome the above limitations, this paper proposes a multi-source deep transfer model based on center-weighted optimal transport (CWOT) and class-level alignment domain adaptation. Firstly, to enhance the representation capability of deep features, a multi-structure feature representation network is constructed to enrich the information capacity embedded within the deep features, thereby achieving better domain adaptation capabilities. Then, the local maximum mean discrepancy is introduced to fully exploit fine-grained information and discriminative features among different source domains, minimizing the distribution differences among the source domains to the greatest extent, thus capturing reliable and highly generalized multi-source domain invariant features. On this basis, a CWOT strategy is designed, which comprehensively considers the transport cost of intra-domain uncertainty and inter-domain correlation among samples, establishing a more effective transport between source and target domains, alleviating the problem of sample negative transfer, and improving the model’s cross-machine diagnostic performance. Finally, instance studies are conducted through multiple cross-machine transfer diagnostic tasks, demonstrating that the proposed method outperforms existing domain adaptation methods in terms of diagnostic accuracy and fault transfer capability. This research provides a reliable fault diagnosis method for detecting the health status of rotating machinery equipment, promoting the application of domain adaptation technology in practical industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
libobobo发布了新的文献求助20
刚刚
雨洋完成签到,获得积分10
刚刚
李健应助竹喧私语采纳,获得10
1秒前
1秒前
1秒前
2秒前
perovskite完成签到,获得积分10
2秒前
顺顺发布了新的文献求助10
3秒前
浮夸关注了科研通微信公众号
3秒前
4秒前
积极天思完成签到 ,获得积分10
4秒前
李爱国应助拼搏绿柳采纳,获得10
4秒前
追寻的凡松完成签到,获得积分10
6秒前
6秒前
小C发布了新的文献求助10
6秒前
6秒前
GXLong发布了新的文献求助10
7秒前
苦哈哈发布了新的文献求助10
7秒前
成就的千凡完成签到 ,获得积分10
7秒前
7秒前
7秒前
唐水之发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
豌豆完成签到,获得积分10
10秒前
大气白翠完成签到,获得积分10
11秒前
流光完成签到,获得积分10
11秒前
11秒前
Owen应助123采纳,获得10
11秒前
竹喧私语完成签到,获得积分20
11秒前
自然紫山发布了新的文献求助10
11秒前
牛奶牛奶发布了新的文献求助10
12秒前
飞儿随缘发布了新的文献求助10
12秒前
12秒前
菜菜泽发布了新的文献求助10
13秒前
豌豆发布了新的文献求助10
13秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978978
求助须知:如何正确求助?哪些是违规求助? 3522830
关于积分的说明 11215177
捐赠科研通 3260355
什么是DOI,文献DOI怎么找? 1799883
邀请新用户注册赠送积分活动 878713
科研通“疑难数据库(出版商)”最低求助积分说明 807060