Boosting Your Context by Dual Similarity Checkup for In-Context Learning Medical Image Segmentation

Boosting(机器学习) 人工智能 计算机科学 背景(考古学) 对偶(语法数字) 图像分割 分割 模式识别(心理学) 相似性(几何) 计算机视觉 图像(数学) 机器学习 地理 艺术 文学类 考古
作者
Jun Gao,Qicheng Lao,Qingbo Kang,Paul Liu,Chenlin Du,Kang Li,Le Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3440311
摘要

The recent advent of in-context learning (ICL) capabilities in large pre-trained models has yielded significant advancements in the generalization of segmentation models. By supplying domain-specific image-mask pairs, the ICL model can be effectively guided to produce optimal segmentation outcomes, eliminating the necessity for model fine-tuning or interactive prompting. However, current existing ICL-based segmentation models exhibit significant limitations when applied to medical segmentation datasets with substantial diversity. To address this issue, we propose a dual similarity checkup approach to guarantee the effectiveness of selected in-context samples so that their guidance can be maximally leveraged during inference. We first employ large pre-trained vision models for extracting strong semantic representations from input images and constructing a feature embedding memory bank for semantic similarity checkup during inference. Assuring the similarity in the input semantic space, we then minimize the discrepancy in the mask appearance distribution between the support set and the estimated mask appearance prior through similarity-weighted sampling and augmentation. We validate our proposed dual similarity checkup approach on eight publicly available medical segmentation datasets, and extensive experimental results demonstrate that our proposed method significantly improves the performance metrics of existing ICL-based segmentation models, particularly when applied to medical image datasets characterized by substantial diversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
super发布了新的文献求助10
刚刚
1秒前
na'na发布了新的文献求助30
1秒前
1秒前
希望天下0贩的0应助mike采纳,获得10
2秒前
迅速向日葵应助Skyyeats采纳,获得10
2秒前
冷艳的纸鹤完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
鲁滨逊发布了新的文献求助10
5秒前
白宇完成签到,获得积分10
5秒前
5秒前
CodeCraft应助林夏采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
sunflower完成签到,获得积分0
7秒前
NexusExplorer应助Tuniverse_采纳,获得10
7秒前
joicelee199完成签到,获得积分10
7秒前
ChinaNiu发布了新的文献求助10
8秒前
Akim应助fff采纳,获得10
9秒前
小天发布了新的文献求助10
10秒前
10秒前
10秒前
As完成签到,获得积分20
10秒前
小黎发布了新的文献求助10
10秒前
夕诙发布了新的文献求助10
11秒前
止戈为武完成签到,获得积分10
11秒前
11秒前
再夕予发布了新的文献求助10
11秒前
平常的羊发布了新的文献求助10
11秒前
Kelly完成签到,获得积分10
11秒前
jinjun发布了新的文献求助10
12秒前
12秒前
zhuxx完成签到,获得积分20
13秒前
乐乐应助达古冰川采纳,获得10
13秒前
13秒前
青山渐青完成签到,获得积分10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772271
求助须知:如何正确求助?哪些是违规求助? 3317649
关于积分的说明 10186966
捐赠科研通 3032802
什么是DOI,文献DOI怎么找? 1663732
邀请新用户注册赠送积分活动 795908
科研通“疑难数据库(出版商)”最低求助积分说明 757100