Dye-sensitized solar cells (DSSCs) are a type of thin-film solar cell that has been extensively studied for more than two decades due to their low manufacturing cost, flexibility and ability to operate under low-light conditions. However, there are some challenges that need to be addressed, such as energy losses, material integration, weak photocurrent generation and stability, to enhance the performance of DSSCs. One of the approaches to enhance the performance of DSSCs is the use of luminescent materials. These are materials that can absorb light and re-emit at different wavelengths, allowing the conversion of ultraviolet (UV) and near-infrared (NIR) light, which DSSCs do not efficiently utilize, into visible light that can be absorbed. The main objective of this article is to provide an in-depth review of the impact of luminescent materials in DSSCs. Research interest on luminescent materials, particularly down conversion, up-conversion and quantum dots, was analyzed using data from the “Web of Science”. It revealed a remarkable number of over 200,000 publications in the past decade. Therefore, the state of the art of luminescent materials for enhancing the performance of the solar cells was reviewed, which showed significant potential in enhancing the performance of DSSCs.