Layout Optimization of Logistics and Warehouse Land Based on a Multi-Objective Genetic Algorithm—Taking Wuhan City as an Example

遗传算法 计算机科学 订单(交换) 过程(计算) 匹配(统计) 运筹学 供求关系 运输工程 业务 工程类 经济 操作系统 微观经济学 机器学习 统计 数学 财务
作者
Haijun Li,Jie Zhou,Qiang Niu,Mingxiang Feng,Dongming Zhou
出处
期刊:ISPRS international journal of geo-information [Multidisciplinary Digital Publishing Institute]
卷期号:13 (7): 240-240
标识
DOI:10.3390/ijgi13070240
摘要

With the rapid development of the logistics industry, the demand for logistics activities is increasing significantly. Concurrently, growing urbanization is causing the space for logistics and warehousing to become limited. Thus, more and more attention is being paid to the planning and construction of logistics facilities. However, due to spatiotemporal trajectory data (such as truck GPS data) being used less often in planning, the method of quantitative analysis for freight spatiotemporal activity is limited. Thus, the spatial layout of logistics and warehousing land does not match the current demand very well. In addition, it is necessary to consider the interactive relationship with the urban built environment in the process of optimizing layout, in order to comprehensively balance the spatial coupling with the functions of housing, transportation, industry, and so on. Therefore, the layout of logistics and warehouse land could be treated as a multi-objective optimization problem. This study aims to establish a model for logistics and warehouse land layout optimization to achieve a supply–demand matching. The proposed model comprehensively considers economic benefits, time benefits, cost benefits, environmental benefits, and other factors with freight GPS data, land-use data, transportation network data, and other multi-source data. A genetic algorithm is built to solve the model. Finally, this study takes the Wuhan urban development area as an example to practice the proposed method in three scenarios in order to verify its effectiveness. The results show that the optimization model solves the problem of mismatch between the supply and demand of logistics spaces to a certain extent, demonstrating the efficiency and scientificity of the optimization solutions. Based on the results of the three scenarios, it is proven that freight activities could effectively enhance the scientific validity of the optimization solution and the proposed model could optimize layouts under different scenario requirements. In summary, this study provides a practical and effective tool for logistics- and warehouse-land layout evaluation and optimization for urban planners and administrators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高尚完成签到,获得积分10
刚刚
于哄哄完成签到,获得积分20
1秒前
Chanyl发布了新的文献求助10
1秒前
赘婿应助排骨大王采纳,获得10
2秒前
不想活了发布了新的文献求助10
2秒前
CQ完成签到,获得积分10
2秒前
阿清完成签到 ,获得积分20
3秒前
淡淡的沅完成签到,获得积分10
3秒前
4秒前
CipherSage应助cheng采纳,获得10
4秒前
朱科源啊源完成签到 ,获得积分10
5秒前
拉长的乐瑶完成签到,获得积分10
5秒前
5秒前
6秒前
材料小王子完成签到 ,获得积分10
6秒前
7秒前
whl完成签到 ,获得积分10
8秒前
8秒前
8秒前
kris发布了新的文献求助10
8秒前
9秒前
研友_VZG7GZ应助chaowei采纳,获得10
9秒前
庾稀发布了新的文献求助10
10秒前
DrLiu完成签到,获得积分10
11秒前
xjl完成签到,获得积分10
11秒前
谥輄发布了新的文献求助10
12秒前
洁净大神完成签到,获得积分10
12秒前
13秒前
13秒前
漫漫发布了新的文献求助10
13秒前
852应助北国采纳,获得10
15秒前
华仔应助小智采纳,获得10
15秒前
程风破浪发布了新的文献求助10
16秒前
Stella完成签到,获得积分10
17秒前
三物发布了新的文献求助10
17秒前
coke完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959733
求助须知:如何正确求助?哪些是违规求助? 3506004
关于积分的说明 11127299
捐赠科研通 3237957
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803000