Layout Optimization of Logistics and Warehouse Land Based on a Multi-Objective Genetic Algorithm—Taking Wuhan City as an Example

遗传算法 计算机科学 订单(交换) 过程(计算) 匹配(统计) 运筹学 供求关系 运输工程 业务 工程类 经济 统计 数学 财务 机器学习 微观经济学 操作系统
作者
Haijun Li,Jie Zhou,Qiang Niu,Mingxiang Feng,Dongming Zhou
出处
期刊:ISPRS international journal of geo-information [MDPI AG]
卷期号:13 (7): 240-240
标识
DOI:10.3390/ijgi13070240
摘要

With the rapid development of the logistics industry, the demand for logistics activities is increasing significantly. Concurrently, growing urbanization is causing the space for logistics and warehousing to become limited. Thus, more and more attention is being paid to the planning and construction of logistics facilities. However, due to spatiotemporal trajectory data (such as truck GPS data) being used less often in planning, the method of quantitative analysis for freight spatiotemporal activity is limited. Thus, the spatial layout of logistics and warehousing land does not match the current demand very well. In addition, it is necessary to consider the interactive relationship with the urban built environment in the process of optimizing layout, in order to comprehensively balance the spatial coupling with the functions of housing, transportation, industry, and so on. Therefore, the layout of logistics and warehouse land could be treated as a multi-objective optimization problem. This study aims to establish a model for logistics and warehouse land layout optimization to achieve a supply–demand matching. The proposed model comprehensively considers economic benefits, time benefits, cost benefits, environmental benefits, and other factors with freight GPS data, land-use data, transportation network data, and other multi-source data. A genetic algorithm is built to solve the model. Finally, this study takes the Wuhan urban development area as an example to practice the proposed method in three scenarios in order to verify its effectiveness. The results show that the optimization model solves the problem of mismatch between the supply and demand of logistics spaces to a certain extent, demonstrating the efficiency and scientificity of the optimization solutions. Based on the results of the three scenarios, it is proven that freight activities could effectively enhance the scientific validity of the optimization solution and the proposed model could optimize layouts under different scenario requirements. In summary, this study provides a practical and effective tool for logistics- and warehouse-land layout evaluation and optimization for urban planners and administrators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
轻松沛凝完成签到,获得积分10
1秒前
1秒前
牛牛完成签到,获得积分10
2秒前
2秒前
感动清炎完成签到,获得积分10
3秒前
青菜完成签到,获得积分10
3秒前
Xxxxxxx完成签到,获得积分10
3秒前
高强发布了新的文献求助10
3秒前
我一拳打树上完成签到,获得积分10
4秒前
haha完成签到,获得积分10
4秒前
5秒前
xsy完成签到 ,获得积分10
5秒前
css1997完成签到 ,获得积分10
5秒前
澈千子完成签到,获得积分10
6秒前
6秒前
wxy21完成签到,获得积分10
6秒前
蔡小娜发布了新的文献求助30
6秒前
7秒前
崔佳鑫完成签到 ,获得积分10
7秒前
7秒前
清脆的土豆完成签到,获得积分0
8秒前
四夕水窖完成签到,获得积分10
9秒前
puhu应助豪的花花采纳,获得10
10秒前
10秒前
六步郎发布了新的文献求助10
11秒前
高高友桃完成签到,获得积分10
11秒前
美味cookies发布了新的文献求助10
11秒前
鱼柒完成签到 ,获得积分10
12秒前
1234qwer发布了新的文献求助10
13秒前
Capital完成签到,获得积分10
13秒前
13秒前
汉堡包应助涓涓采纳,获得10
14秒前
情怀应助高强采纳,获得10
14秒前
温暖发布了新的文献求助10
14秒前
foxdaopo完成签到,获得积分10
16秒前
新明完成签到,获得积分10
17秒前
membrane完成签到,获得积分10
17秒前
小蘑菇应助健忘的寄瑶采纳,获得10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261885
求助须知:如何正确求助?哪些是违规求助? 2902600
关于积分的说明 8320758
捐赠科研通 2572517
什么是DOI,文献DOI怎么找? 1397698
科研通“疑难数据库(出版商)”最低求助积分说明 653851
邀请新用户注册赠送积分活动 632341