METAPHOR: Metabolic evaluation through phasor-based hyperspectral imaging and organelle recognition for mouse blastocysts and oocytes

生物 自体荧光 胚胎 卵母细胞 活体细胞成像 荧光寿命成像显微镜 男科 细胞生物学 遗传学 医学 细胞 荧光 物理 量子力学
作者
Albert Parra,Denitza Denkova,Xavier P. Burgos-Artizzu,Ester Aroca,Marc Casals,Amélie Luise Godeau,Miguel Ares,Anna Ferrer‐Vaquer,Ot Massafret,Irene Oliver‐Vila,Enric Mestres,Mònica Acacio,Nuno Costa-Borges,Elena Rebollo,Hsiao Ju Chiang,Scott E. Fraser,Francesco Cutrale,Anna Seriola,Samuel Ojosnegros
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (28) 被引量:2
标识
DOI:10.1073/pnas.2315043121
摘要

Only 30% of embryos from in vitro fertilized oocytes successfully implant and develop to term, leading to repeated transfer cycles. To reduce time-to-pregnancy and stress for patients, there is a need for a diagnostic tool to better select embryos and oocytes based on their physiology. The current standard employs brightfield imaging, which provides limited physiological information. Here, we introduce METAPHOR: Metabolic Evaluation through Phasor-based Hyperspectral Imaging and Organelle Recognition. This non-invasive, label-free imaging method combines two-photon illumination and AI to deliver the metabolic profile of embryos and oocytes based on intrinsic autofluorescence signals. We used it to classify i) mouse blastocysts cultured under standard conditions or with depletion of selected metabolites (glucose, pyruvate, lactate); and ii) oocytes from young and old mouse females, or in vitro-aged oocytes. The imaging process was safe for blastocysts and oocytes. The METAPHOR classification of control vs. metabolites-depleted embryos reached an area under the ROC curve (AUC) of 93.7%, compared to 51% achieved for human grading using brightfield imaging. The binary classification of young vs. old/in vitro-aged oocytes and their blastulation prediction using METAPHOR reached an AUC of 96.2% and 82.2%, respectively. Finally, organelle recognition and segmentation based on the flavin adenine dinucleotide signal revealed that quantification of mitochondria size and distribution can be used as a biomarker to classify oocytes and embryos. The performance and safety of the method highlight the accuracy of noninvasive metabolic imaging as a complementary approach to evaluate oocytes and embryos based on their physiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锂炸完成签到,获得积分10
1秒前
怕黑蓝发布了新的文献求助10
1秒前
怕孤单的牛排完成签到,获得积分10
1秒前
酱肉丝完成签到 ,获得积分10
1秒前
wang发布了新的文献求助10
1秒前
SciGPT应助TIGun采纳,获得10
1秒前
Crystal完成签到,获得积分10
2秒前
2秒前
2秒前
Wayne66完成签到,获得积分10
3秒前
3秒前
二零三发布了新的文献求助10
3秒前
拉拉完成签到 ,获得积分20
3秒前
3秒前
4秒前
Coco发布了新的文献求助10
4秒前
lcm完成签到,获得积分10
4秒前
4秒前
4秒前
hao123发布了新的文献求助10
4秒前
科研通AI2S应助123采纳,获得10
4秒前
ao关闭了ao文献求助
5秒前
赵文悦完成签到,获得积分10
6秒前
桐桐应助北冥有鱼采纳,获得10
7秒前
华仔应助昂首采纳,获得20
7秒前
7秒前
王文茹发布了新的文献求助10
7秒前
7秒前
Jasper应助机灵的千琴采纳,获得10
8秒前
cc只会嘻嘻完成签到 ,获得积分10
8秒前
hh发布了新的文献求助30
8秒前
naive完成签到,获得积分10
9秒前
二零三完成签到,获得积分10
9秒前
黑木完成签到 ,获得积分10
9秒前
9秒前
怕黑蓝完成签到,获得积分10
10秒前
10秒前
舒适砖头发布了新的文献求助10
10秒前
ppppp发布了新的文献求助10
11秒前
12秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217353
求助须知:如何正确求助?哪些是违规求助? 2866617
关于积分的说明 8152518
捐赠科研通 2533308
什么是DOI,文献DOI怎么找? 1366190
科研通“疑难数据库(出版商)”最低求助积分说明 644710
邀请新用户注册赠送积分活动 617698