Model-Informed Radiopharmaceutical Therapy Optimization: A Study on the Impact of PBPK Model Parameters on Physical, Biological, and Statistical Measures in 177Lu-PSMA Therapy

基于生理学的药代动力学模型 药代动力学 放射性核素治疗 药理学 医学 内化 肿瘤科 核医学 内科学 受体
作者
Hamid Abdollahi,Ali Fele‐Paranj,Arman Rahmim
出处
期刊:Cancers [MDPI AG]
卷期号:16 (18): 3120-3120
标识
DOI:10.3390/cancers16183120
摘要

Purpose: To investigate the impact of physiologically based pharmacokinetic (PBPK) parameters on physical, biological, and statistical measures in lutetium-177-labeled radiopharmaceutical therapies (RPTs) targeting the prostate-specific membrane antigen (PSMA). Methods: Using a clinically validated PBPK model, realistic time–activity curves (TACs) for tumors, salivary glands, and kidneys were generated based on various model parameters. These TACs were used to calculate the area-under-the-TAC (AUC), dose, biologically effective dose (BED), and figure-of-merit BED (fBED). The effects of these parameters on radiobiological, pharmacokinetic, time, and statistical features were assessed. Results: Manipulating PBPK parameters significantly influenced AUC, dose, BED, and fBED outcomes across four different BED models. Higher association rates increased AUC, dose, and BED values for tumors, with minimal impact on non-target organs. Increased internalization rates reduced AUC and dose for tumors and kidneys. Higher serum protein-binding rates decreased AUC and dose for all tissues. Elevated tumor receptor density and ligand amounts enhanced uptake and effectiveness in tumors. Larger tumor volumes required dosimetry adjustments to maintain efficacy. Setting the tumor release rate to zero intensified the impact of association and internalization rates, enhancing tumor targeting while minimizing the effects on salivary glands and kidneys. Conclusions: Optimizing PBPK parameters can enhance the efficacy of lutetium-177-labeled RPTs targeting PSMA, providing insights for personalized and effective treatment regimens to minimize toxicity and improve therapeutic outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小确幸完成签到,获得积分10
刚刚
彭于晏应助毛毛虫采纳,获得10
1秒前
LilyChen完成签到 ,获得积分10
1秒前
Owen应助Su采纳,获得10
1秒前
1秒前
1秒前
2秒前
3秒前
yyyy关注了科研通微信公众号
3秒前
Jane完成签到 ,获得积分10
4秒前
4秒前
4秒前
kento发布了新的文献求助30
4秒前
Akim应助balzacsun采纳,获得10
5秒前
狼来了aas发布了新的文献求助10
5秒前
6秒前
didi完成签到,获得积分10
6秒前
嘻嘻发布了新的文献求助10
8秒前
冲冲冲完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
善良身影完成签到,获得积分10
11秒前
天天快乐应助郭豪琪采纳,获得10
12秒前
13679165979发布了新的文献求助10
14秒前
13679165979发布了新的文献求助10
14秒前
13679165979发布了新的文献求助10
14秒前
13679165979发布了新的文献求助10
14秒前
13679165979发布了新的文献求助10
14秒前
14秒前
Su发布了新的文献求助10
14秒前
14秒前
淡定的思松应助呆萌士晋采纳,获得10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824