Personalized Federated Transfer Learning for Cycle-Life Prediction of Lithium-Ion Batteries in Heterogeneous Clients With Data Privacy Protection

计算机科学 锂(药物) 隐私保护 数据建模 信息隐私 计算机安全 计算机网络 数据库 医学 内分泌学
作者
Cheng‐Geng Huang,He Li,Weiwen Peng,Loon Ching Tang,Zhi‐Sheng Ye
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (22): 36895-36906 被引量:1
标识
DOI:10.1109/jiot.2024.3433460
摘要

Health prognostics within the Internet of Things (IoT) paradigm face several challenges, including data privacy, client drift, and prediction accuracy. Federated learning (FL), as an emerging decentralized machine learning paradigm, has the potential to address these challenges by integrating multiple data silos in a distributed and privacy-preserved fashion. This article develops a novel personalized federated transfer learning (PFTL) framework for customized health prognosis of multiple heterogeneous clients. The framework starts with a powerful initial global prognostic model that is pretrained using a publicly available data set in a central server. The pretrained global model is then distributed to the local clients and fine-tuned separately on their respective private data sets. The fine-tuned local prognostic models are uploaded to the central server for dynamic weighted model aggregation. The aggregated model is then distributed to each client for implementing domain adversarial training to obtain a fine-grained local prognostic model. The proposed PFTL framework embeds a multiscale attention module and a multihead self-attention module parallelly into the deep learning-based prognostic model, which is shared between the central server and each local client. Through experimental verifications from lab testing-based and open-source fast-charging lithium-ion batteries data sets, we demonstrate that the proposed method can achieve accurate cycle-life prediction without compromising data privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk发布了新的文献求助10
刚刚
尊敬的青易完成签到,获得积分10
刚刚
1秒前
3秒前
所所应助loy采纳,获得10
3秒前
在水一方应助爱学习小LI采纳,获得10
5秒前
爆米花应助kkk采纳,获得10
5秒前
LiuChuannan完成签到 ,获得积分10
7秒前
大胆的向日葵完成签到,获得积分10
7秒前
8秒前
往返发布了新的文献求助10
9秒前
Bio应助天天采纳,获得25
10秒前
ding应助Ai_niyou采纳,获得10
12秒前
文右三完成签到,获得积分10
19秒前
wyw完成签到 ,获得积分10
22秒前
23秒前
榴莲完成签到,获得积分10
23秒前
坦率的海豚完成签到,获得积分10
25秒前
26秒前
量子星尘发布了新的文献求助30
27秒前
OSASACB完成签到 ,获得积分10
27秒前
28秒前
Rick发布了新的文献求助10
29秒前
Owen应助NCU-Xzzzz采纳,获得10
30秒前
叶寻完成签到,获得积分20
31秒前
Lilith完成签到,获得积分10
31秒前
坚强慕蕊发布了新的文献求助10
33秒前
凶狠的白桃完成签到 ,获得积分10
35秒前
35秒前
36秒前
37秒前
37秒前
37秒前
carly发布了新的文献求助10
38秒前
ZZ发布了新的文献求助10
41秒前
NCU-Xzzzz发布了新的文献求助10
42秒前
42秒前
好运连连发布了新的文献求助10
42秒前
逆时针应助胡一把采纳,获得10
43秒前
墨酒发布了新的文献求助10
46秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167