Personalized Federated Transfer Learning for Cycle-Life Prediction of Lithium-Ion Batteries in Heterogeneous Clients With Data Privacy Protection

计算机科学 锂(药物) 隐私保护 数据建模 信息隐私 计算机安全 计算机网络 数据库 医学 内分泌学
作者
Cheng‐Geng Huang,He Li,Weiwen Peng,Loon Ching Tang,Zhi‐Sheng Ye
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (22): 36895-36906 被引量:1
标识
DOI:10.1109/jiot.2024.3433460
摘要

Health prognostics within the Internet of Things (IoT) paradigm face several challenges, including data privacy, client drift, and prediction accuracy. Federated learning (FL), as an emerging decentralized machine learning paradigm, has the potential to address these challenges by integrating multiple data silos in a distributed and privacy-preserved fashion. This article develops a novel personalized federated transfer learning (PFTL) framework for customized health prognosis of multiple heterogeneous clients. The framework starts with a powerful initial global prognostic model that is pretrained using a publicly available data set in a central server. The pretrained global model is then distributed to the local clients and fine-tuned separately on their respective private data sets. The fine-tuned local prognostic models are uploaded to the central server for dynamic weighted model aggregation. The aggregated model is then distributed to each client for implementing domain adversarial training to obtain a fine-grained local prognostic model. The proposed PFTL framework embeds a multiscale attention module and a multihead self-attention module parallelly into the deep learning-based prognostic model, which is shared between the central server and each local client. Through experimental verifications from lab testing-based and open-source fast-charging lithium-ion batteries data sets, we demonstrate that the proposed method can achieve accurate cycle-life prediction without compromising data privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐沐发布了新的文献求助30
刚刚
malistm发布了新的文献求助10
1秒前
彭佳丽发布了新的文献求助10
1秒前
yanhuazi完成签到,获得积分10
2秒前
39完成签到,获得积分10
2秒前
小蘑菇应助把握当下采纳,获得10
2秒前
陈欣怡完成签到,获得积分20
2秒前
连天与发布了新的文献求助10
3秒前
大林发布了新的文献求助30
3秒前
鹏826发布了新的文献求助10
5秒前
星辰大海应助bofu采纳,获得10
6秒前
7秒前
8秒前
Lucas应助彭佳丽采纳,获得10
8秒前
p_kunnnn完成签到,获得积分10
9秒前
小云飘飘发布了新的文献求助10
12秒前
烟花应助有一个盆采纳,获得10
12秒前
Chloe955完成签到,获得积分10
12秒前
毁灭世界发布了新的文献求助10
14秒前
14秒前
zwd完成签到,获得积分10
15秒前
大模型应助Nefelibate采纳,获得10
15秒前
bkagyin应助bofu采纳,获得10
16秒前
16秒前
16秒前
16秒前
连天与完成签到,获得积分10
17秒前
18秒前
Jason-1024完成签到,获得积分10
20秒前
飘逸续完成签到,获得积分10
21秒前
sonny发布了新的文献求助10
21秒前
小云飘飘完成签到,获得积分10
21秒前
22秒前
Dr_Wang完成签到,获得积分10
22秒前
bravo完成签到,获得积分10
23秒前
23秒前
飞快的珩发布了新的文献求助10
24秒前
Hello应助bofu采纳,获得10
26秒前
27秒前
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309669
求助须知:如何正确求助?哪些是违规求助? 2942933
关于积分的说明 8511870
捐赠科研通 2618027
什么是DOI,文献DOI怎么找? 1430770
科研通“疑难数据库(出版商)”最低求助积分说明 664273
邀请新用户注册赠送积分活动 649451