Event-Based Measurement of Aeroelastic Structure in High-Speed Flow

气动弹性 事件(粒子物理) 流量(数学) 结构工程 航空航天工程 空气动力学 机械 工程类 计算机科学 物理 量子力学
作者
Kyle Hsu,Jia-Ming Tan,Yu-Sheng Chen,Chi‐Che Hung,Zu Puayen Tan,Gaetano M. D. Currao,Bing-Sheng Jiang
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:: 1-12 被引量:1
标识
DOI:10.2514/1.j064591
摘要

In high-speed aerodynamics research, point sensors are ideal for embedding in test models but lack spatial resolution, whereas high-speed cameras offer spatiotemporally resolved measurement but involve significant footprint, cost, and data size. To address these tradeoffs, this study explores the application of nascent event-based cameras for high-speed tests. Event-based cameras support continuous, data-sparse kilohertz-equivalent imaging at [Formula: see text] resolution, on form factors as small as 36 mm and 40 grams in mass, combining the benefits of point sensors and high-speed cameras. However, these attributes come from asynchronous pixels that necessitate unique operating and postprocessing approaches. Here, the authors adapted event-based cameras for two-/three-dimensional photogrammetric tracking of aeroelastic structures, demonstrating an event-based workflow and two tracking algorithms (mean-shift filtering and circle fit). Bench-top validations achieved three-dimensional precision of 0.35 mm/s on 20 mm/s motion across a 259 mm field of view, while two-dimensional measurements of an aeroelastic titanium panel in Mach 0.76 transonic flow successfully identified millimeter-scale vibrations at 43.7, 120, and 270 Hz, validated against a laser displacement and high-speed camera. The transonic test’s raw data were 145.8 MB on the event-based camera, compared to 88.5 GB on the high-speed camera. The presented results demonstrated the viability of event-based techniques in high-speed aerodynamic testing, while highlighting challenges such as polarity switching and pixel latency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
嘿嘿嘿发布了新的文献求助10
1秒前
1秒前
2秒前
小肥鑫发布了新的文献求助10
3秒前
4秒前
scoot完成签到 ,获得积分10
4秒前
wjx关闭了wjx文献求助
4秒前
4秒前
蛋挞完成签到,获得积分20
4秒前
hhh完成签到 ,获得积分10
6秒前
爱学习发布了新的文献求助10
6秒前
张张发布了新的文献求助10
6秒前
wangsai0532完成签到,获得积分10
7秒前
7秒前
SciGPT应助1111111111111111采纳,获得10
7秒前
7秒前
Aaron完成签到 ,获得积分10
8秒前
xx完成签到,获得积分10
8秒前
嘿嘿嘿发布了新的文献求助10
8秒前
晗晗发布了新的文献求助10
9秒前
9秒前
研友_VZG7GZ应助小肥鑫采纳,获得10
9秒前
万能图书馆应助Joey采纳,获得10
11秒前
11秒前
12秒前
香蕉觅云应助EmmaLin采纳,获得10
12秒前
12秒前
77发布了新的文献求助10
13秒前
14秒前
FashionBoy应助泠漓采纳,获得10
14秒前
14秒前
14秒前
于大强完成签到,获得积分10
15秒前
共享精神应助晗晗采纳,获得10
16秒前
终抵星空发布了新的文献求助10
16秒前
轻松的妍发布了新的文献求助10
16秒前
深情安青应助嘿嘿嘿采纳,获得10
16秒前
搜集达人应助lvlv采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676