Event-Based Measurement of Aeroelastic Structure in High-Speed Flow

气动弹性 事件(粒子物理) 流量(数学) 结构工程 航空航天工程 空气动力学 机械 工程类 计算机科学 物理 量子力学
作者
Kyle Hsu,Jia-Ming Tan,Yu-Sheng Chen,Chi‐Che Hung,Zu Puayen Tan,Gaetano M. D. Currao,Bing-Sheng Jiang
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:: 1-12
标识
DOI:10.2514/1.j064591
摘要

In high-speed aerodynamics research, point sensors are ideal for embedding in test models but lack spatial resolution, whereas high-speed cameras offer spatiotemporally resolved measurement but involve significant footprint, cost, and data size. To address these tradeoffs, this study explores the application of nascent event-based cameras for high-speed tests. Event-based cameras support continuous, data-sparse kilohertz-equivalent imaging at [Formula: see text] resolution, on form factors as small as 36 mm and 40 grams in mass, combining the benefits of point sensors and high-speed cameras. However, these attributes come from asynchronous pixels that necessitate unique operating and postprocessing approaches. Here, the authors adapted event-based cameras for two-/three-dimensional photogrammetric tracking of aeroelastic structures, demonstrating an event-based workflow and two tracking algorithms (mean-shift filtering and circle fit). Bench-top validations achieved three-dimensional precision of 0.35 mm/s on 20 mm/s motion across a 259 mm field of view, while two-dimensional measurements of an aeroelastic titanium panel in Mach 0.76 transonic flow successfully identified millimeter-scale vibrations at 43.7, 120, and 270 Hz, validated against a laser displacement and high-speed camera. The transonic test’s raw data were 145.8 MB on the event-based camera, compared to 88.5 GB on the high-speed camera. The presented results demonstrated the viability of event-based techniques in high-speed aerodynamic testing, while highlighting challenges such as polarity switching and pixel latency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
周士乐发布了新的文献求助10
刚刚
Sunshine发布了新的文献求助10
刚刚
呼吸之野完成签到,获得积分10
1秒前
害怕的小懒虫完成签到,获得积分10
1秒前
思源应助Nefelibata采纳,获得10
2秒前
妮儿发布了新的文献求助10
2秒前
BareBear应助rosa采纳,获得10
2秒前
沉默凡桃发布了新的文献求助10
3秒前
Orange应助9℃采纳,获得10
3秒前
3秒前
一只橘子完成签到 ,获得积分10
3秒前
4秒前
韭黄发布了新的文献求助10
4秒前
西瓜发布了新的文献求助10
4秒前
Ll发布了新的文献求助10
4秒前
4秒前
wcy关注了科研通微信公众号
4秒前
5秒前
5秒前
CipherSage应助爱喝冰可乐采纳,获得10
6秒前
6秒前
bdvdsrwteges完成签到,获得积分10
6秒前
鱼雷完成签到,获得积分10
7秒前
7秒前
天天快乐应助喜洋洋采纳,获得10
7秒前
PANSIXUAN完成签到 ,获得积分10
8秒前
善良香岚发布了新的文献求助10
8秒前
8秒前
huizi完成签到,获得积分20
8秒前
RichardZ完成签到,获得积分10
8秒前
8秒前
左左发布了新的文献求助10
9秒前
执着的怜寒应助哈哈哈haha采纳,获得40
9秒前
Cassie完成签到 ,获得积分10
10秒前
10秒前
雄i完成签到,获得积分10
10秒前
Chenly完成签到,获得积分10
11秒前
科目三应助韭黄采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759