An End-to-end Knowledge Graph Fused Graph Neural Network for Accurate Protein-Protein Interactions Prediction

端到端原则 图形 计算机科学 人工神经网络 人工智能 理论计算机科学
作者
Jie Yang,Yapeng Li,Guoyin Wang,Zhong Chen,Di Wu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tcbb.2024.3486216
摘要

Protein-protein interactions (PPIs) are essential to understanding cellular mechanisms, signaling networks, disease processes, and drug development, as they represent the physical contacts and functional associations between proteins. Recent advances have witnessed the achievements of artificial intelligence (AI) methods aimed at predicting PPIs. However, these approaches often handle the intricate web of relationships and mechanisms among proteins, drugs, diseases, ribonucleic acid (RNA), and protein structures in a fragmented or superficial manner. This is typically due to the limitations of non-end-to-end learning frameworks, which can lead to sub-optimal feature extraction and fusion, thereby compromising the prediction accuracy. To address these deficiencies, this paper introduces a novel end-to-end learning model, the Knowledge Graph Fused Graph Neural Network (KGF-GNN). This model comprises three integral components: (1) Protein Associated Network (PAN) Construction: We begin by constructing a PAN that extensively captures the diverse relationships and mechanisms linking proteins with drugs, diseases, RNA, and protein structures. (2) Graph Neural Network for Feature Extraction: A Graph Neural Network (GNN) is then employed to distill both topological and semantic features from the PAN, alongside another GNN designed to extract topological features directly from observed PPI networks. (3) Multi-layer Perceptron for Feature Fusion: Finally, a multi-layer perceptron integrates these varied features through end-to-end learning, ensuring that the feature extraction and fusion processes are both comprehensive and optimized for PPI prediction. Extensive experiments conducted on real-world PPI datasets validate the effectiveness of our proposed KGF-GNN approach, which not only achieves high accuracy in predicting PPIs but also significantly surpasses existing state-of-the-art models. This work not only enhances our ability to predict PPIs with a higher precision but also contributes to the broader application of AI in Bioinformatics, offering profound implications for biological research and therapeutic development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
秋秋应助细心的凌香采纳,获得10
2秒前
2秒前
石狗西发布了新的文献求助10
3秒前
xgx984发布了新的文献求助10
3秒前
热情笑旋完成签到,获得积分10
3秒前
密钥完成签到,获得积分10
4秒前
nefu biology完成签到,获得积分10
4秒前
4秒前
科目三应助psychosocial采纳,获得10
4秒前
xiaolu完成签到,获得积分20
5秒前
5秒前
6秒前
7秒前
7秒前
排骨发布了新的文献求助30
7秒前
8秒前
8秒前
蓝玉完成签到,获得积分10
8秒前
9秒前
9秒前
哼哼发布了新的文献求助10
10秒前
10秒前
等待诗柳发布了新的文献求助10
11秒前
123发布了新的文献求助10
11秒前
所所应助xgx984采纳,获得10
11秒前
结实的芷文完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
旺仔仔发布了新的文献求助10
13秒前
13秒前
13秒前
qinghe完成签到 ,获得积分10
13秒前
拼搏半梦发布了新的文献求助10
14秒前
asd发布了新的文献求助20
14秒前
清脆的梦寒完成签到,获得积分10
15秒前
yjc完成签到 ,获得积分10
15秒前
爱做实验的泡利完成签到,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297208
求助须知:如何正确求助?哪些是违规求助? 2932718
关于积分的说明 8458529
捐赠科研通 2605409
什么是DOI,文献DOI怎么找? 1422272
科研通“疑难数据库(出版商)”最低求助积分说明 661364
邀请新用户注册赠送积分活动 644603