Improved Faster-RCNN Algorithm for Traffic Sign Detection

计算机科学 符号(数学) 算法 人工智能 模式识别(心理学) 数学 数学分析
作者
Li Xuejun,Quan Linfei,Yingzhi Zhang,Chenyu Han
标识
DOI:10.59782/sidr.v1i1.30
摘要

This article proposes an improved Faster-RCNN algorithm for detecting small traffic signs, which addresses the issues of poor recognition performance of distant small targets and high computation cost in real-world traffic scenes affected by weather and lighting conditions. Based on the basic architecture of Faster-RCNN, the algorithm reconstructs the backbone network and improves the region proposal network to make the network framework lightweight. A multi-scale feature fusion network is designed by integrating the scSE attention and GSConv modules, and the Anchors box size is updated to improve the localization and recognition of traffic sign targets. The ROI Align pooling operation with bilinear interpolation for each target subregion is used to preserve the detailed features of the target region and improve the ability to capture details of distant targets. The balanced L1 loss function is adopted to address the problem of imbalance between samples with large gradient difficulty and those with small gradient easiness, thus improving the training effect. Experiments were conducted on the expanded TT100K dataset. Results show that compared with traditional Faster-RCNN, the model weight is reduced by 200 MB, and detection accuracy is improved by . The algorithm achieves a detection accuracy of in low-intensity environments such as cloudy days, which helps improve the traffic sign detection performance in extreme environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搁浅完成签到,获得积分20
1秒前
新八完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
Yamila完成签到,获得积分10
4秒前
华仔应助MasterE采纳,获得10
4秒前
5秒前
汉堡包应助gaogao采纳,获得10
5秒前
kido发布了新的文献求助10
5秒前
5秒前
寸寸发布了新的文献求助10
5秒前
5秒前
斯文败类应助叶子采纳,获得10
6秒前
yqb完成签到,获得积分10
7秒前
7秒前
烟花应助迷路纲采纳,获得10
7秒前
8秒前
lunjianchi发布了新的文献求助10
11秒前
打打应助富裕山人采纳,获得10
11秒前
jie发布了新的文献求助10
11秒前
111完成签到,获得积分10
12秒前
今后应助LYZ采纳,获得10
12秒前
香蕉觅云应助天天小女孩采纳,获得10
12秒前
搜集达人应助诚心的水杯采纳,获得10
13秒前
14秒前
lalalala发布了新的文献求助10
15秒前
lvpl完成签到 ,获得积分10
15秒前
大个应助Crazy_Runner采纳,获得10
16秒前
16秒前
16秒前
善学以致用应助kido采纳,获得10
17秒前
wuwu完成签到 ,获得积分20
17秒前
17秒前
downdown完成签到,获得积分10
18秒前
zzzzzz发布了新的文献求助30
18秒前
Hello应助丶呆久自然萌采纳,获得10
18秒前
淡淡菠萝发布了新的文献求助10
19秒前
科研路漫漫应助研友_ZlxxzZ采纳,获得10
19秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391025
求助须知:如何正确求助?哪些是违规求助? 3002329
关于积分的说明 8803309
捐赠科研通 2688943
什么是DOI,文献DOI怎么找? 1472808
科研通“疑难数据库(出版商)”最低求助积分说明 681187
邀请新用户注册赠送积分活动 674001