Potential Role of Generative Adversarial Networks in Enhancing Brain Tumors

试验装置 人工神经网络 人工智能 均方误差 对比度(视觉) 计算机科学 相似性(几何) 数据集 集合(抽象数据类型) 交叉熵 对抗制 生成语法 生成对抗网络 考试(生物学) 模式识别(心理学) 深度学习 统计 数学 古生物学 图像(数学) 生物 程序设计语言
作者
Amr Muhammed,Rafaat Abdelaal Bakheet,Karam Kenawy,Ahmed Michail Awad Ahmed,Muhammed Abdelhamid,walaa soliman
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (8)
标识
DOI:10.1200/cci.23.00266
摘要

PURPOSE Contrast enhancement is necessary for visualizing, diagnosing, and treating brain tumors. Through this study, we aimed to examine the potential role of general adversarial neural networks in generating artificial intelligence–based enhancement of tumors using a lightweight model. PATIENTS AND METHODS A retrospective study was conducted on magnetic resonance imaging scans of patients diagnosed with brain tumors between 2020 and 2023. A generative adversarial neural network was built to generate images that would mimic the real contrast enhancement of these tumors. The performance of the neural network was evaluated quantitatively by VGG-16, ResNet, binary cross-entropy loss, mean absolute error, mean squared error, and structural similarity index measures. Regarding the qualitative evaluation, nine cases were randomly selected from the test set and were used to build a short satisfaction survey for experienced medical professionals. RESULTS One hundred twenty-nine patients with 156 scans were identified from the hospital database. The data were randomly split into a training set and validation set (90%) and a test set (10%). The VGG loss function for training, validation, and test sets were 2,049.8, 2,632.6, and 4,276.9, respectively. Additionally, the structural similarity index measured 0.366, 0.356, and 0.3192, respectively. At the time of submitting the article, 23 medical professionals responded to the survey. The median overall satisfaction score was 7 of 10. CONCLUSION Our network would open the door for using lightweight models in performing artificial contrast enhancement. Further research is necessary in this field to reach the point of clinical practicality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
WLWLW发布了新的文献求助30
1秒前
1秒前
JamesPei应助now采纳,获得10
2秒前
2秒前
维时完成签到,获得积分10
2秒前
K2L完成签到,获得积分10
4秒前
wdy337发布了新的文献求助10
5秒前
火炉猫猫完成签到,获得积分10
5秒前
果果发布了新的文献求助30
5秒前
11发布了新的文献求助10
5秒前
清河完成签到,获得积分10
6秒前
学术垃圾制造者完成签到,获得积分10
6秒前
南风上北山完成签到,获得积分10
6秒前
7秒前
7秒前
专注的轻完成签到,获得积分10
7秒前
zzy完成签到 ,获得积分10
7秒前
sxs完成签到 ,获得积分10
7秒前
又夏完成签到,获得积分10
8秒前
zhang完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
lizhaoyu应助xiaoliu采纳,获得30
9秒前
wf完成签到,获得积分10
9秒前
红黄蓝完成签到 ,获得积分10
9秒前
张牧之完成签到 ,获得积分10
10秒前
10秒前
失眠的汽车完成签到,获得积分10
10秒前
Ezio_sunhao完成签到,获得积分10
10秒前
江三村发布了新的文献求助10
11秒前
nqj发布了新的文献求助30
11秒前
科研通AI2S应助zxzb采纳,获得10
11秒前
now完成签到,获得积分10
12秒前
lijikj完成签到 ,获得积分10
12秒前
12秒前
Alex发布了新的文献求助10
13秒前
黑麦完成签到 ,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015939
求助须知:如何正确求助?哪些是违规求助? 3555887
关于积分的说明 11319237
捐赠科研通 3288997
什么是DOI,文献DOI怎么找? 1812357
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044