Potential Role of Generative Adversarial Networks in Enhancing Brain Tumors

试验装置 人工神经网络 人工智能 均方误差 对比度(视觉) 计算机科学 相似性(几何) 数据集 集合(抽象数据类型) 交叉熵 对抗制 生成语法 生成对抗网络 考试(生物学) 模式识别(心理学) 深度学习 统计 数学 古生物学 图像(数学) 生物 程序设计语言
作者
Amr Muhammed,Rafaat Abdelaal Bakheet,Karam Kenawy,Ahmed Michail Awad Ahmed,Muhammed Abdelhamid,walaa soliman
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8)
标识
DOI:10.1200/cci.23.00266
摘要

PURPOSE Contrast enhancement is necessary for visualizing, diagnosing, and treating brain tumors. Through this study, we aimed to examine the potential role of general adversarial neural networks in generating artificial intelligence–based enhancement of tumors using a lightweight model. PATIENTS AND METHODS A retrospective study was conducted on magnetic resonance imaging scans of patients diagnosed with brain tumors between 2020 and 2023. A generative adversarial neural network was built to generate images that would mimic the real contrast enhancement of these tumors. The performance of the neural network was evaluated quantitatively by VGG-16, ResNet, binary cross-entropy loss, mean absolute error, mean squared error, and structural similarity index measures. Regarding the qualitative evaluation, nine cases were randomly selected from the test set and were used to build a short satisfaction survey for experienced medical professionals. RESULTS One hundred twenty-nine patients with 156 scans were identified from the hospital database. The data were randomly split into a training set and validation set (90%) and a test set (10%). The VGG loss function for training, validation, and test sets were 2,049.8, 2,632.6, and 4,276.9, respectively. Additionally, the structural similarity index measured 0.366, 0.356, and 0.3192, respectively. At the time of submitting the article, 23 medical professionals responded to the survey. The median overall satisfaction score was 7 of 10. CONCLUSION Our network would open the door for using lightweight models in performing artificial contrast enhancement. Further research is necessary in this field to reach the point of clinical practicality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助诚心谷南采纳,获得10
1秒前
1秒前
Joy发布了新的文献求助10
1秒前
sqw发布了新的文献求助20
3秒前
出路完成签到,获得积分20
3秒前
4秒前
5秒前
7秒前
长春福报小子完成签到,获得积分10
7秒前
yujian完成签到,获得积分10
8秒前
9秒前
妍妍发布了新的文献求助10
9秒前
单薄咖啡豆完成签到 ,获得积分10
10秒前
14秒前
诚心谷南发布了新的文献求助10
15秒前
善学以致用应助妍妍采纳,获得10
17秒前
刻苦的kiwi完成签到,获得积分10
19秒前
情怀应助s_h采纳,获得10
19秒前
你好发布了新的文献求助10
22秒前
认真学习发布了新的文献求助10
23秒前
yujian关注了科研通微信公众号
24秒前
Estrella应助叁壹捌采纳,获得10
24秒前
天丽完成签到,获得积分10
25秒前
26秒前
玻璃杯发布了新的文献求助10
30秒前
nyc发布了新的文献求助30
31秒前
32秒前
科研通AI2S应助tuanheqi采纳,获得20
33秒前
xinopha完成签到 ,获得积分10
34秒前
认真学习完成签到,获得积分10
35秒前
35秒前
你好完成签到,获得积分10
36秒前
dai完成签到,获得积分20
37秒前
Parotodus发布了新的文献求助30
38秒前
子车茗应助葡萄成熟采纳,获得10
39秒前
YZT8848完成签到,获得积分10
40秒前
科研小狗完成签到 ,获得积分10
41秒前
44秒前
NexusExplorer应助nyc采纳,获得30
45秒前
lili完成签到 ,获得积分10
49秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164310
求助须知:如何正确求助?哪些是违规求助? 2815071
关于积分的说明 7907481
捐赠科研通 2474626
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228