Adaptive Preference Measurement with Unstructured Data

计算机科学 非结构化数据 编码(社会科学) 任务(项目管理) 数据科学 分析 入职培训 消费者行为 情报检索 数据挖掘 大数据 营销 心理学 数学 社会心理学 统计 业务 经济 管理
作者
Ryan Dew
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2023.03775
摘要

Many products are most meaningfully described using unstructured data such as text or images. Unstructured data are also common in e-commerce, in which products are often described by photos and text but not with standardized sets of attributes. Whereas much is known about how to efficiently measure consumer preferences when products can be meaningfully described by structured attributes, there is scant research on doing the same for unstructured data. This paper introduces a real-time, adaptive survey design framework for measuring preferences over unstructured data, leveraging Bayesian optimization. By adaptively choosing items to display based on uncertainty around a nonparametric utility model, the proposed method maximizes information gain per question, enabling quick estimation of individual-level preferences. The approach operates on embeddings of the unstructured data, thereby eliminating the requirement for manual coding of product attributes. We apply the method to measuring preferences over clothing and highlight its potential for both the general task of marketing research and the specific task of designing customer onboarding surveys to mitigate the cold-start recommendation problem. We also develop methods for interpreting the nonparametric utility functions, which allow us to reconstruct consumer valuations of discrete attributes, even for attributes that were not considered or available a priori. This paper was accepted by Duncan Simester, marketing. Fundings: Funding for this project was provided by Analytics at Wharton, the Wharton Behavioral Lab, and the Wharton Dean’s Fund. The author also thanks the Govil Family for financial support. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.03775 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JiangY完成签到,获得积分10
刚刚
妮妮爱smile完成签到,获得积分10
1秒前
咕噜仔发布了新的文献求助10
1秒前
2秒前
研友_VZG7GZ应助King16采纳,获得10
2秒前
lyn发布了新的文献求助10
2秒前
瑰夏完成签到,获得积分20
2秒前
喜洋洋发布了新的文献求助10
2秒前
ZL发布了新的文献求助10
2秒前
zhang发布了新的文献求助10
2秒前
2秒前
顺利的爆米花完成签到 ,获得积分10
3秒前
沉静秋尽完成签到,获得积分10
3秒前
大个应助沉静的颦采纳,获得10
3秒前
657完成签到 ,获得积分10
3秒前
3秒前
执念完成签到 ,获得积分10
4秒前
ECCE713完成签到,获得积分10
4秒前
小刺完成签到,获得积分10
4秒前
sweetbearm应助zxl采纳,获得10
4秒前
优秀的盼夏完成签到,获得积分10
5秒前
传奇3应助沉敛一生采纳,获得10
5秒前
科研通AI5应助咕噜仔采纳,获得50
5秒前
lm完成签到,获得积分20
5秒前
FFF发布了新的文献求助10
6秒前
小二郎应助哈哈采纳,获得10
6秒前
乐乐应助juan采纳,获得10
7秒前
txyouniverse完成签到 ,获得积分10
7秒前
CodeCraft应助纷花雨采纳,获得10
7秒前
小十二完成签到,获得积分10
7秒前
Tianxu Li发布了新的文献求助10
8秒前
月白完成签到,获得积分10
8秒前
淡淡de橙子完成签到,获得积分10
9秒前
含蓄哈密瓜完成签到,获得积分20
9秒前
10秒前
小蘑菇应助白华苍松采纳,获得10
10秒前
董咚咚完成签到,获得积分10
12秒前
洋芋片完成签到 ,获得积分10
12秒前
二尖瓣后叶完成签到,获得积分10
13秒前
zc完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759