Adaptive Preference Measurement with Unstructured Data

计算机科学 非结构化数据 编码(社会科学) 任务(项目管理) 数据科学 分析 入职培训 消费者行为 情报检索 数据挖掘 大数据 营销 业务 经济 统计 管理 社会心理学 数学 心理学
作者
Ryan Dew
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2023.03775
摘要

Many products are most meaningfully described using unstructured data such as text or images. Unstructured data are also common in e-commerce, in which products are often described by photos and text but not with standardized sets of attributes. Whereas much is known about how to efficiently measure consumer preferences when products can be meaningfully described by structured attributes, there is scant research on doing the same for unstructured data. This paper introduces a real-time, adaptive survey design framework for measuring preferences over unstructured data, leveraging Bayesian optimization. By adaptively choosing items to display based on uncertainty around a nonparametric utility model, the proposed method maximizes information gain per question, enabling quick estimation of individual-level preferences. The approach operates on embeddings of the unstructured data, thereby eliminating the requirement for manual coding of product attributes. We apply the method to measuring preferences over clothing and highlight its potential for both the general task of marketing research and the specific task of designing customer onboarding surveys to mitigate the cold-start recommendation problem. We also develop methods for interpreting the nonparametric utility functions, which allow us to reconstruct consumer valuations of discrete attributes, even for attributes that were not considered or available a priori. This paper was accepted by Duncan Simester, marketing. Fundings: Funding for this project was provided by Analytics at Wharton, the Wharton Behavioral Lab, and the Wharton Dean’s Fund. The author also thanks the Govil Family for financial support. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.03775 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清醒完成签到,获得积分10
2秒前
认真的慕儿完成签到 ,获得积分10
4秒前
萱1988完成签到,获得积分10
5秒前
111111完成签到,获得积分10
6秒前
7秒前
SL完成签到,获得积分10
10秒前
闫伯涵发布了新的文献求助10
11秒前
buno应助tczw667采纳,获得10
12秒前
大白沙子完成签到,获得积分10
16秒前
方若剑应助zhul采纳,获得10
17秒前
华仔应助闫伯涵采纳,获得10
18秒前
LX77bx完成签到,获得积分10
20秒前
背书强完成签到 ,获得积分10
21秒前
科研通AI2S应助bin采纳,获得10
21秒前
21秒前
ken131完成签到 ,获得积分10
23秒前
让我康康发布了新的文献求助10
24秒前
居居侠完成签到 ,获得积分10
25秒前
小龙完成签到,获得积分10
26秒前
chi完成签到 ,获得积分10
26秒前
CCL完成签到,获得积分10
27秒前
精灵夜雨完成签到,获得积分10
30秒前
周冯雪完成签到 ,获得积分10
32秒前
龙箫羽笛完成签到 ,获得积分10
32秒前
孝铮完成签到 ,获得积分10
33秒前
负责紊完成签到,获得积分10
34秒前
那一瞬的永恒完成签到,获得积分10
36秒前
爱笑的曼易完成签到,获得积分10
36秒前
壮观的谷冬完成签到,获得积分10
37秒前
科研通AI2S应助秋浱采纳,获得10
37秒前
blueblue完成签到,获得积分10
37秒前
zhul完成签到,获得积分10
37秒前
imuzi完成签到,获得积分10
37秒前
蓝桉完成签到,获得积分10
38秒前
方若剑完成签到,获得积分10
38秒前
baihao821720完成签到 ,获得积分10
40秒前
孤独雨梅完成签到,获得积分10
44秒前
所所应助tczw667采纳,获得10
44秒前
单纯的海云完成签到 ,获得积分10
47秒前
严西完成签到,获得积分10
49秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242003
求助须知:如何正确求助?哪些是违规求助? 2886360
关于积分的说明 8242812
捐赠科研通 2554998
什么是DOI,文献DOI怎么找? 1383171
科研通“疑难数据库(出版商)”最低求助积分说明 649658
邀请新用户注册赠送积分活动 625417