Adaptive Preference Measurement with Unstructured Data

计算机科学 非结构化数据 编码(社会科学) 任务(项目管理) 数据科学 分析 入职培训 消费者行为 情报检索 数据挖掘 大数据 营销 心理学 数学 社会心理学 统计 业务 经济 管理
作者
Ryan Dew
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2023.03775
摘要

Many products are most meaningfully described using unstructured data such as text or images. Unstructured data are also common in e-commerce, in which products are often described by photos and text but not with standardized sets of attributes. Whereas much is known about how to efficiently measure consumer preferences when products can be meaningfully described by structured attributes, there is scant research on doing the same for unstructured data. This paper introduces a real-time, adaptive survey design framework for measuring preferences over unstructured data, leveraging Bayesian optimization. By adaptively choosing items to display based on uncertainty around a nonparametric utility model, the proposed method maximizes information gain per question, enabling quick estimation of individual-level preferences. The approach operates on embeddings of the unstructured data, thereby eliminating the requirement for manual coding of product attributes. We apply the method to measuring preferences over clothing and highlight its potential for both the general task of marketing research and the specific task of designing customer onboarding surveys to mitigate the cold-start recommendation problem. We also develop methods for interpreting the nonparametric utility functions, which allow us to reconstruct consumer valuations of discrete attributes, even for attributes that were not considered or available a priori. This paper was accepted by Duncan Simester, marketing. Fundings: Funding for this project was provided by Analytics at Wharton, the Wharton Behavioral Lab, and the Wharton Dean’s Fund. The author also thanks the Govil Family for financial support. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.03775 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fengzhen007发布了新的文献求助10
1秒前
情怀应助joinn采纳,获得10
1秒前
2秒前
liusx123发布了新的文献求助10
2秒前
芹菜发布了新的文献求助20
3秒前
3秒前
SEM小菜鸡发布了新的文献求助10
4秒前
lxl98完成签到,获得积分10
5秒前
酷波er应助HHH采纳,获得10
7秒前
通关完成签到 ,获得积分10
7秒前
7秒前
an发布了新的文献求助10
8秒前
一个好人Li完成签到,获得积分10
8秒前
8秒前
wdy应助段王爷采纳,获得30
9秒前
10秒前
10秒前
11秒前
12秒前
一只肥牛完成签到 ,获得积分10
12秒前
12秒前
痞子王完成签到 ,获得积分10
13秒前
13秒前
13秒前
阿承完成签到,获得积分10
14秒前
矮小的长颈鹿完成签到,获得积分10
14秒前
乐多发布了新的文献求助10
14秒前
shouying发布了新的文献求助10
16秒前
hyl发布了新的文献求助10
17秒前
妮妮发布了新的文献求助20
17秒前
arneyda发布了新的文献求助10
17秒前
小绾完成签到,获得积分10
18秒前
叫我陈老师啊完成签到,获得积分10
18秒前
桐桐应助zy3637采纳,获得10
18秒前
Q甜完成签到,获得积分10
19秒前
HHH发布了新的文献求助10
19秒前
薛言完成签到,获得积分10
19秒前
Biyanchao应助lxl98采纳,获得10
21秒前
lxl1996完成签到,获得积分10
22秒前
隐形曼青应助郝出站采纳,获得30
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952180
求助须知:如何正确求助?哪些是违规求助? 3497683
关于积分的说明 11088472
捐赠科研通 3228269
什么是DOI,文献DOI怎么找? 1784720
邀请新用户注册赠送积分活动 868875
科研通“疑难数据库(出版商)”最低求助积分说明 801281