亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatial prediction of soil organic carbon: Combining machine learning with residual kriging in an agricultural lowland area (Lombardy region, Italy)

克里金 土壤碳 环境科学 背景(考古学) 随机森林 均方误差 变异函数 残余物 空间分析 极限学习机 人工神经网络 土壤科学 统计 计算机科学 数学 机器学习 算法 地理 土壤水分 考古
作者
Odunayo David Adeniyi,Alexander Brenning,Michael Maerker
出处
期刊:Geoderma [Elsevier]
卷期号:448: 116953-116953 被引量:1
标识
DOI:10.1016/j.geoderma.2024.116953
摘要

Soil organic carbon (SOC) plays a crucial role in the global carbon cycle and in maintaining soil functions in the context of land use and climate change. Understanding the spatial distribution of SOC is essential for the management of agricultural land to optimize soil health and carbon storage. In this study, we investigated the spatial distribution of SOC in an agricultural lowland area of the Lombardy region, Italy, using machine learning (ML) techniques combined with residual kriging. ML models, including the artificial neural network (ANN), extreme learning machine (ELM), and random forest (RF), were trained on 120 SOC observations and eight environmental variables to predict SOC values across the study area. The performance of this ML approach was assessed using a ten-fold nested cross-validation process. The ELM and RF models showed better predictive performances based on the concordance correlation coefficient and root mean square error (RMSE), with RF slightly outperforming ELM based on the RMSE. The residuals of each iteration from the ML models were interpolated by ordinary kriging (OK) and added to the ML-based trend model in a hybrid regression-kriging approach. This approach which accounted for the spatial autocorrelation of the prediction residuals, resulting in a marginally improved prediction accuracy in the ML models. In addition, we found that vertical distance to the channel network and channel network base level are important predictor variables that should be considered in future digital soil models for SOC in lowland areas, given their importance in this study. Furthermore, this study highlights that predicted SOC values were low, particularly in Luvisols, which can be explained by the long history of agricultural land use depleting SOC due to agricultural management and loss of organic plant residues. The prediction maps depicted spatial variation and patterns of SOC in the study area. Our findings may help to refine soil management practices and contribute to improving soil health and carbon sequestration in agricultural lowland areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熬夜波比应助江经纬采纳,获得10
2秒前
orixero应助wq采纳,获得10
4秒前
33秒前
善学以致用应助DouBo采纳,获得10
33秒前
在水一方应助雾里采纳,获得10
37秒前
37秒前
39秒前
43秒前
46秒前
51秒前
55秒前
Lucas应助鳄鱼不做饿梦采纳,获得10
56秒前
58秒前
DouBo发布了新的文献求助10
59秒前
光亮静槐完成签到 ,获得积分10
1分钟前
魔幻的芳完成签到,获得积分10
1分钟前
1分钟前
火星上的宝马完成签到,获得积分10
1分钟前
隔壁老王发布了新的文献求助10
1分钟前
悲凉的忆南完成签到,获得积分10
1分钟前
陈旧完成签到,获得积分10
1分钟前
欣欣子完成签到,获得积分10
1分钟前
1分钟前
sunstar完成签到,获得积分10
1分钟前
雾里发布了新的文献求助10
1分钟前
yxl完成签到,获得积分10
1分钟前
1分钟前
可耐的盈完成签到,获得积分10
1分钟前
绿毛水怪完成签到,获得积分10
1分钟前
1分钟前
lsc完成签到,获得积分10
1分钟前
1分钟前
小fei完成签到,获得积分10
1分钟前
万能图书馆应助雾里采纳,获得10
1分钟前
wq发布了新的文献求助10
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664241
求助须知:如何正确求助?哪些是违规求助? 4859506
关于积分的说明 15107358
捐赠科研通 4822753
什么是DOI,文献DOI怎么找? 2581699
邀请新用户注册赠送积分活动 1535922
关于科研通互助平台的介绍 1494120