Spatial prediction of soil organic carbon: Combining machine learning with residual kriging in an agricultural lowland area (Lombardy region, Italy)

克里金 土壤碳 环境科学 背景(考古学) 随机森林 均方误差 变异函数 残余物 空间分析 极限学习机 人工神经网络 土壤科学 统计 计算机科学 数学 机器学习 算法 地理 土壤水分 考古
作者
Odunayo David Adeniyi,Alexander Brenning,Michael Maerker
出处
期刊:Geoderma [Elsevier]
卷期号:448: 116953-116953 被引量:1
标识
DOI:10.1016/j.geoderma.2024.116953
摘要

Soil organic carbon (SOC) plays a crucial role in the global carbon cycle and in maintaining soil functions in the context of land use and climate change. Understanding the spatial distribution of SOC is essential for the management of agricultural land to optimize soil health and carbon storage. In this study, we investigated the spatial distribution of SOC in an agricultural lowland area of the Lombardy region, Italy, using machine learning (ML) techniques combined with residual kriging. ML models, including the artificial neural network (ANN), extreme learning machine (ELM), and random forest (RF), were trained on 120 SOC observations and eight environmental variables to predict SOC values across the study area. The performance of this ML approach was assessed using a ten-fold nested cross-validation process. The ELM and RF models showed better predictive performances based on the concordance correlation coefficient and root mean square error (RMSE), with RF slightly outperforming ELM based on the RMSE. The residuals of each iteration from the ML models were interpolated by ordinary kriging (OK) and added to the ML-based trend model in a hybrid regression-kriging approach. This approach which accounted for the spatial autocorrelation of the prediction residuals, resulting in a marginally improved prediction accuracy in the ML models. In addition, we found that vertical distance to the channel network and channel network base level are important predictor variables that should be considered in future digital soil models for SOC in lowland areas, given their importance in this study. Furthermore, this study highlights that predicted SOC values were low, particularly in Luvisols, which can be explained by the long history of agricultural land use depleting SOC due to agricultural management and loss of organic plant residues. The prediction maps depicted spatial variation and patterns of SOC in the study area. Our findings may help to refine soil management practices and contribute to improving soil health and carbon sequestration in agricultural lowland areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柿饼完成签到,获得积分10
1秒前
俊逸的白梦完成签到 ,获得积分10
2秒前
yujie完成签到 ,获得积分10
8秒前
我独舞完成签到 ,获得积分10
11秒前
简单幸福完成签到 ,获得积分10
13秒前
Herbs完成签到 ,获得积分10
14秒前
崩溃完成签到,获得积分10
22秒前
chenbin完成签到,获得积分10
26秒前
科研通AI2S应助mariawang采纳,获得10
28秒前
陈米花完成签到,获得积分10
30秒前
yyjl31完成签到,获得积分0
30秒前
Simon_chat完成签到,获得积分10
30秒前
认真的小懒虫完成签到 ,获得积分10
31秒前
吐司炸弹完成签到,获得积分10
33秒前
mayfly完成签到,获得积分10
33秒前
Phil应助科研通管家采纳,获得20
34秒前
Phil应助科研通管家采纳,获得20
34秒前
Phil应助科研通管家采纳,获得20
34秒前
Phil应助科研通管家采纳,获得20
34秒前
Phil应助科研通管家采纳,获得20
34秒前
Jonsnow完成签到 ,获得积分10
37秒前
mariawang发布了新的文献求助10
53秒前
organicboy完成签到 ,获得积分10
53秒前
Eri_SCI完成签到 ,获得积分10
1分钟前
小白兔完成签到 ,获得积分10
1分钟前
momo完成签到,获得积分10
1分钟前
serendipity完成签到 ,获得积分10
1分钟前
迅速的念芹完成签到 ,获得积分10
1分钟前
开心夏旋完成签到 ,获得积分10
2分钟前
席江海完成签到,获得积分10
2分钟前
冰留完成签到 ,获得积分10
2分钟前
Doris完成签到 ,获得积分10
2分钟前
kehe!完成签到 ,获得积分0
2分钟前
果粒橙完成签到 ,获得积分10
2分钟前
李海平完成签到 ,获得积分10
2分钟前
温婉的凝丹完成签到 ,获得积分10
2分钟前
单薄沐夏完成签到 ,获得积分10
2分钟前
烟花应助Wenfeifei采纳,获得10
2分钟前
Phil应助科研通管家采纳,获得50
2分钟前
Phil应助科研通管家采纳,获得20
2分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229761
求助须知:如何正确求助?哪些是违规求助? 2877260
关于积分的说明 8198668
捐赠科研通 2544754
什么是DOI,文献DOI怎么找? 1374645
科研通“疑难数据库(出版商)”最低求助积分说明 647024
邀请新用户注册赠送积分活动 621851