清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Spatial prediction of soil organic carbon: Combining machine learning with residual kriging in an agricultural lowland area (Lombardy region, Italy)

克里金 土壤碳 环境科学 背景(考古学) 随机森林 均方误差 变异函数 残余物 空间分析 极限学习机 人工神经网络 土壤科学 统计 计算机科学 数学 机器学习 算法 地理 土壤水分 考古
作者
Odunayo David Adeniyi,Alexander Brenning,Michael Maerker
出处
期刊:Geoderma [Elsevier BV]
卷期号:448: 116953-116953 被引量:1
标识
DOI:10.1016/j.geoderma.2024.116953
摘要

Soil organic carbon (SOC) plays a crucial role in the global carbon cycle and in maintaining soil functions in the context of land use and climate change. Understanding the spatial distribution of SOC is essential for the management of agricultural land to optimize soil health and carbon storage. In this study, we investigated the spatial distribution of SOC in an agricultural lowland area of the Lombardy region, Italy, using machine learning (ML) techniques combined with residual kriging. ML models, including the artificial neural network (ANN), extreme learning machine (ELM), and random forest (RF), were trained on 120 SOC observations and eight environmental variables to predict SOC values across the study area. The performance of this ML approach was assessed using a ten-fold nested cross-validation process. The ELM and RF models showed better predictive performances based on the concordance correlation coefficient and root mean square error (RMSE), with RF slightly outperforming ELM based on the RMSE. The residuals of each iteration from the ML models were interpolated by ordinary kriging (OK) and added to the ML-based trend model in a hybrid regression-kriging approach. This approach which accounted for the spatial autocorrelation of the prediction residuals, resulting in a marginally improved prediction accuracy in the ML models. In addition, we found that vertical distance to the channel network and channel network base level are important predictor variables that should be considered in future digital soil models for SOC in lowland areas, given their importance in this study. Furthermore, this study highlights that predicted SOC values were low, particularly in Luvisols, which can be explained by the long history of agricultural land use depleting SOC due to agricultural management and loss of organic plant residues. The prediction maps depicted spatial variation and patterns of SOC in the study area. Our findings may help to refine soil management practices and contribute to improving soil health and carbon sequestration in agricultural lowland areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rayoo发布了新的文献求助10
刚刚
wanci应助幽默滑板采纳,获得10
4秒前
小婷君完成签到,获得积分10
5秒前
5秒前
8秒前
医学僧发布了新的文献求助10
14秒前
老刘完成签到,获得积分10
22秒前
29秒前
44秒前
46秒前
1分钟前
幽默滑板完成签到,获得积分10
1分钟前
迪鸣完成签到,获得积分0
1分钟前
1分钟前
路过完成签到 ,获得积分10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
chichenglin完成签到 ,获得积分10
1分钟前
racill完成签到 ,获得积分10
1分钟前
xiaosang0619完成签到,获得积分10
2分钟前
彩色的芷容完成签到 ,获得积分10
2分钟前
fogsea完成签到,获得积分0
2分钟前
合适醉蝶完成签到 ,获得积分10
2分钟前
zhaoyu完成签到 ,获得积分10
2分钟前
LeoBigman完成签到 ,获得积分10
2分钟前
myq完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
DJ_Tokyo完成签到,获得积分10
2分钟前
平淡访冬完成签到 ,获得积分10
2分钟前
3分钟前
橙汁摇一摇完成签到 ,获得积分10
3分钟前
ARIA完成签到 ,获得积分10
3分钟前
aimanqiankun55完成签到 ,获得积分10
3分钟前
3分钟前
卷卷心发布了新的文献求助30
3分钟前
瘦瘦发布了新的文献求助20
3分钟前
zzgpku完成签到,获得积分0
3分钟前
红茸茸羊完成签到 ,获得积分10
3分钟前
666完成签到 ,获得积分0
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839