Spatial prediction of soil organic carbon: Combining machine learning with residual kriging in an agricultural lowland area (Lombardy region, Italy)

克里金 土壤碳 环境科学 背景(考古学) 随机森林 均方误差 变异函数 残余物 空间分析 极限学习机 人工神经网络 土壤科学 统计 计算机科学 数学 机器学习 算法 地理 土壤水分 考古
作者
Odunayo David Adeniyi,Alexander Brenning,Michael Maerker
出处
期刊:Geoderma [Elsevier]
卷期号:448: 116953-116953 被引量:1
标识
DOI:10.1016/j.geoderma.2024.116953
摘要

Soil organic carbon (SOC) plays a crucial role in the global carbon cycle and in maintaining soil functions in the context of land use and climate change. Understanding the spatial distribution of SOC is essential for the management of agricultural land to optimize soil health and carbon storage. In this study, we investigated the spatial distribution of SOC in an agricultural lowland area of the Lombardy region, Italy, using machine learning (ML) techniques combined with residual kriging. ML models, including the artificial neural network (ANN), extreme learning machine (ELM), and random forest (RF), were trained on 120 SOC observations and eight environmental variables to predict SOC values across the study area. The performance of this ML approach was assessed using a ten-fold nested cross-validation process. The ELM and RF models showed better predictive performances based on the concordance correlation coefficient and root mean square error (RMSE), with RF slightly outperforming ELM based on the RMSE. The residuals of each iteration from the ML models were interpolated by ordinary kriging (OK) and added to the ML-based trend model in a hybrid regression-kriging approach. This approach which accounted for the spatial autocorrelation of the prediction residuals, resulting in a marginally improved prediction accuracy in the ML models. In addition, we found that vertical distance to the channel network and channel network base level are important predictor variables that should be considered in future digital soil models for SOC in lowland areas, given their importance in this study. Furthermore, this study highlights that predicted SOC values were low, particularly in Luvisols, which can be explained by the long history of agricultural land use depleting SOC due to agricultural management and loss of organic plant residues. The prediction maps depicted spatial variation and patterns of SOC in the study area. Our findings may help to refine soil management practices and contribute to improving soil health and carbon sequestration in agricultural lowland areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
希望天下0贩的0应助hohokuz采纳,获得10
刚刚
柏梦岚发布了新的文献求助10
1秒前
1秒前
2秒前
CodeCraft应助柳絮采纳,获得10
2秒前
2秒前
整齐冬瓜完成签到,获得积分10
3秒前
完美世界应助凤凰山采纳,获得10
3秒前
粱自中发布了新的文献求助10
3秒前
3秒前
无花果应助孟陬十一采纳,获得10
4秒前
NEMO完成签到,获得积分20
4秒前
4秒前
4秒前
没有昵称完成签到,获得积分10
5秒前
5秒前
充电宝应助屹舟采纳,获得10
5秒前
5秒前
大胆的莛发布了新的文献求助10
5秒前
Akim应助caicai采纳,获得10
5秒前
科研通AI5应助俏皮的悟空采纳,获得30
6秒前
++完成签到 ,获得积分10
6秒前
星星完成签到,获得积分10
7秒前
脑洞疼应助bioinforiver采纳,获得80
7秒前
ZL发布了新的文献求助10
7秒前
111完成签到,获得积分10
7秒前
沐风完成签到,获得积分20
7秒前
8秒前
CipherSage应助澹台灭明采纳,获得10
8秒前
Oreaee完成签到,获得积分10
9秒前
fanfanzzz完成签到,获得积分10
9秒前
英姑应助MADKAI采纳,获得10
9秒前
mammoth发布了新的文献求助20
9秒前
9秒前
大个应助唉呦嘿采纳,获得10
10秒前
11秒前
Jenny应助觅桃乌龙采纳,获得10
11秒前
JL完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762