MRI-based Tumor Habitat Analysis for Treatment Evaluation of Radiotherapy on Esophageal Cancer

食管癌 接收机工作特性 医学 体素 放射科 放化疗 膀胱癌 核医学 癌症 放射治疗 内科学
作者
Shaolei Li,Zhao Shengguang,Dai Yongming,He Yida,Hongcheng Yang,Xuekun Zhang,Xiaohong Chen,Qi Weixiang,Chen Mei,Yibin Zhang,Chen Jiayi,Fuhua Yan,Cheng Zenghui,Yang Ying-li
出处
期刊:Journal of radiology and oncology [Heighten Science Publications Corporation]
卷期号:8 (1): 055-063
标识
DOI:10.29328/journal.jro.1001065
摘要

Introduction: We aim to evaluate the performance of pre-treatment MRI-based habitat imaging to segment tumor micro-environment and its potential to identify patients with esophageal cancer who can achieve pathological complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT). Material and methods: A total of 18 patients with locally advanced esophageal cancer (LAEC) were recruited into this retrospective study. All patients underwent MRI before nCRT and surgery using a 3.0 T scanner (Ingenia 3.0 CX, Philips Healthcare). A series of MR sequences including T2-weighted (T2), diffusion-weighted imaging (DWI), and Contrast Enhance-T1 weighted (CE-T1) were performed. A clustering algorithm using a two-stage hierarchical approach groups MRI voxels into separate clusters based on their similarity. The t-test and receiver operating characteristic (ROC) analysis were used to evaluate the predictive effect of pCR on habitat imaging results. Cross-validation of 18 folds is used to test the accuracy of predictions. Results: A total of 9 habitats were identified based on structural and physiologic features. The predictive performance of habitat imaging based on these habitat volume fractions (VFs) was evaluated. Students’ t-tests identified 2 habitats as good classifiers for pCR and non-pCR patients. ROC analysis shows that the best classifier had the highest AUC (0.82) with an average prediction accuracy of 77.78%. Conclusion: We demonstrate that MRI-based tumor habitat imaging has great potential for predicting treatment response in LAEC. Spatialized habitat imaging results can also be used to identify tumor non-responsive sub-regions for the design of focused boost treatment to potentially improve nCRT efficacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙猫猫发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
6秒前
orixero应助FG采纳,获得10
8秒前
juanjie发布了新的文献求助10
9秒前
10秒前
情怀应助surain采纳,获得10
14秒前
Eclipse12138完成签到,获得积分10
15秒前
15秒前
16秒前
Jane发布了新的文献求助10
16秒前
科研通AI6应助sara采纳,获得10
17秒前
17秒前
MMZ完成签到 ,获得积分10
17秒前
18秒前
AAA完成签到,获得积分10
18秒前
橙猫猫发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助150
20秒前
ws完成签到,获得积分10
20秒前
小二郎应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
群青发布了新的文献求助10
21秒前
烟花应助科研通管家采纳,获得30
21秒前
小青椒应助科研通管家采纳,获得150
21秒前
orixero应助科研通管家采纳,获得10
21秒前
rues011完成签到,获得积分10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得50
21秒前
桐桐应助科研通管家采纳,获得10
22秒前
zcl应助科研通管家采纳,获得150
22秒前
浮游应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5100043
求助须知:如何正确求助?哪些是违规求助? 4311763
关于积分的说明 13435223
捐赠科研通 4139226
什么是DOI,文献DOI怎么找? 2267870
邀请新用户注册赠送积分活动 1270769
关于科研通互助平台的介绍 1207108