Machine Learning–Based Time in Patterns for Blood Glucose Fluctuation Pattern Recognition in Type 1 Diabetes Management: Development and Validation Study (Preprint)

分析 血糖性 连续血糖监测 糖化血红素 1型糖尿病 糖尿病 人工智能 计算机科学 2型糖尿病 医学 聚类分析 模式识别(心理学) 数据挖掘 内分泌学
作者
Nicholas Chan,Weizi Li,Theingi Aung,Eghosa Bazuaye,Rosa Montero
标识
DOI:10.2196/preprints.45450
摘要

BACKGROUND Continuous glucose monitoring (CGM) for diabetes combines noninvasive glucose biosensors, continuous monitoring, cloud computing, and analytics to connect and simulate a hospital setting in a person’s home. CGM systems inspired analytics methods to measure glycemic variability (GV), but existing GV analytics methods disregard glucose trends and patterns; hence, they fail to capture entire temporal patterns and do not provide granular insights about glucose fluctuations. OBJECTIVE This study aimed to propose a machine learning–based framework for blood glucose fluctuation pattern recognition, which enables a more comprehensive representation of GV profiles that could present detailed fluctuation information, be easily understood by clinicians, and provide insights about patient groups based on time in blood fluctuation patterns. METHODS Overall, 1.5 million measurements from 126 patients in the United Kingdom with type 1 diabetes mellitus (T1DM) were collected, and prevalent blood fluctuation patterns were extracted using dynamic time warping. The patterns were further validated in 225 patients in the United States with T1DM. Hierarchical clustering was then applied on time in patterns to form 4 clusters of patients. Patient groups were compared using statistical analysis. RESULTS In total, 6 patterns depicting distinctive glucose levels and trends were identified and validated, based on which 4 GV profiles of patients with T1DM were found. They were significantly different in terms of glycemic statuses such as diabetes duration (<i>P</i>=.04), glycated hemoglobin level (<i>P</i>&lt;.001), and time in range (<i>P</i>&lt;.001) and thus had different management needs. CONCLUSIONS The proposed method can analytically extract existing blood fluctuation patterns from CGM data. Thus, time in patterns can capture a rich view of patients’ GV profile. Its conceptual resemblance with time in range, along with rich blood fluctuation details, makes it more scalable, accessible, and informative to clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuzj完成签到 ,获得积分10
1秒前
2秒前
4秒前
5秒前
gx关闭了gx文献求助
7秒前
传奇3应助123采纳,获得10
7秒前
7秒前
8秒前
是是是发布了新的文献求助10
9秒前
Zehn发布了新的文献求助10
9秒前
小马甲应助我相信采纳,获得10
10秒前
pojian发布了新的文献求助10
10秒前
znn发布了新的文献求助10
10秒前
king完成签到,获得积分10
11秒前
13秒前
毛豆应助jlf采纳,获得10
13秒前
计时器响了完成签到,获得积分10
13秒前
miaowuuuuuuu完成签到 ,获得积分10
14秒前
14秒前
15秒前
在水一方应助王永俊采纳,获得30
16秒前
buhuidanhuixue完成签到,获得积分10
16秒前
落寞慕晴完成签到,获得积分10
17秒前
17秒前
18秒前
科研通AI2S应助布鲁克采纳,获得10
19秒前
在水一方应助Zehn采纳,获得10
19秒前
jungwoo123发布了新的文献求助10
19秒前
20秒前
20秒前
阿水发布了新的文献求助10
22秒前
Davidfly20完成签到,获得积分10
23秒前
23秒前
糖果乖乖发布了新的文献求助10
23秒前
23秒前
jungwoo123完成签到,获得积分10
24秒前
飞云之下发布了新的文献求助10
24秒前
乐乐应助Dr3采纳,获得10
26秒前
王永俊完成签到,获得积分10
26秒前
我相信发布了新的文献求助10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465798
求助须知:如何正确求助?哪些是违规求助? 3058804
关于积分的说明 9063408
捐赠科研通 2749205
什么是DOI,文献DOI怎么找? 1508387
科研通“疑难数据库(出版商)”最低求助积分说明 696893
邀请新用户注册赠送积分活动 696599