亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fetal ECG extraction from maternal ECG using deeply supervised LinkNet++ model

计算机科学 人工智能 模式识别(心理学) 信号(编程语言) 深度学习 特征提取 QRS波群 机器学习 医学 心脏病学 程序设计语言
作者
Arafat Rahman,Sakib Mahmud,Muhammad E. H. Chowdhury,Huseyin C. Yalcin,Amith Khandakar,Onur Mutlu,Zaid Bin Mahbub,Reema Yousef Kamal,Steen Pedersen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106414-106414 被引量:7
标识
DOI:10.1016/j.engappai.2023.106414
摘要

Fetal heart monitoring and early disease detection using non-invasive fetal electrocardiograms (fECG) can help substantially to reduce infant death through improved diagnosis of Coronary Heart Disease (CHD) in the fetus. Despite the potential benefits, non-invasive fECG extraction from maternal abdominal ECG (mECG) is a challenging problem due to multiple factors such as the overlap of maternal and fetal R-peaks, low amplitude of fECG, and various systematic and environmental noises. Conventional fECG extraction techniques, such as adaptive filters, independent component analysis (ICA), empirical mode decomposition (EMD), etc., face various performance issues due to the fECG extraction challenges. In this paper, we proposed a novel deep learning architecture, LinkNet++ (motivated by the original LinkNet) to extract fECG from abdominal mECG automatically and efficiently using two different publicly available datasets. LinkNet++ is equipped with a feature-addition method to combine deep and shallow levels with residual blocks to overcome the limitations of U-Net and UNet++ models. It also has deep supervised and densely connected convolution blocks to overcome the limitations of the original LinkNet. The proposed LinkNet++ model was evaluated using fECG signal reconstruction and fetal QRS (fQRS) detection. As a signal-to-signal synthesis model, LinkNet++ performed very well in two real-life datasets and achieved 85.58% and 87.60% Pearson correlation coefficients (PCC) between the ground truth and predicted fECG on two datasets, respectively. In terms of fQRS detection, it also outperformed most of the previous works and showed excellent performance with more than 99% of F1 scores on both datasets. Our results indicate that the proposed model can potentially extract fECG non-invasively with excellent signal quality, thereby providing an excellent diagnostic tool for various fetal heart diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyw完成签到 ,获得积分10
14秒前
21秒前
大方易巧完成签到 ,获得积分10
31秒前
41秒前
lani完成签到 ,获得积分10
47秒前
53秒前
华师发布了新的文献求助30
56秒前
脑洞疼应助华师采纳,获得10
1分钟前
1分钟前
我不到啊发布了新的文献求助10
1分钟前
摆烂完成签到,获得积分10
1分钟前
万俟完成签到 ,获得积分10
1分钟前
我不到啊完成签到,获得积分10
1分钟前
烟花应助摆烂采纳,获得10
2分钟前
2分钟前
万俟发布了新的文献求助10
2分钟前
souther完成签到,获得积分0
2分钟前
nanali19完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
腰突患者的科研完成签到,获得积分10
2分钟前
2分钟前
摆烂发布了新的文献求助10
2分钟前
2分钟前
圆圆901234发布了新的文献求助10
2分钟前
3分钟前
归尘发布了新的文献求助10
3分钟前
圆圆901234完成签到,获得积分10
3分钟前
柳行天完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI5应助圆圆901234采纳,获得10
3分钟前
3分钟前
归尘发布了新的文献求助10
3分钟前
3分钟前
归尘发布了新的文献求助10
3分钟前
3分钟前
归尘发布了新的文献求助10
3分钟前
情怀应助平淡的秋珊采纳,获得10
3分钟前
斯文的妙海完成签到 ,获得积分10
4分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484419
求助须知:如何正确求助?哪些是违规求助? 3073435
关于积分的说明 9130961
捐赠科研通 2765049
什么是DOI,文献DOI怎么找? 1517559
邀请新用户注册赠送积分活动 702162
科研通“疑难数据库(出版商)”最低求助积分说明 701166