阴极
锂(药物)
电解质
硼
材料科学
涂层
表面改性
粒子(生态学)
离子
扩散
Crystal(编程语言)
分析化学(期刊)
化学工程
单晶
化学
纳米技术
结晶学
电极
物理化学
内分泌学
工程类
有机化学
地质学
物理
程序设计语言
海洋学
热力学
医学
色谱法
计算机科学
作者
Binbin Chu,Ruoyu Xu,Guangxin Li,Jinyu Chen,Zijian Xu,Tao Huang,Bo Wang,Aishui Yu
标识
DOI:10.1016/j.jpowsour.2023.233260
摘要
The ultra-high nickel LiNixCoyMn1-x-yO2 (x > 0.9) cathode material is a prime candidate for powering next-generation electric vehicles. However, its inherent structural instability and complicated interface side-reactions limit its commercialization. Here, the LiNi0.92Co0.04Mn0.04O2 single-crystal cathode material with an average particle size of 1.69 μm is prepared via a simple temperature fluctuation method combined with B and W surface modification. As-formed surface Li–B–O and Li2WO4 lithium ion conductors can successfully enhance the discharge capacity of single crystal LiNi0.92Co0.04Mn0.04O2 from 219.9 to 226.5 mAh g−1 by facilitating lithium ion diffusion. At 4.5 V, the B and W surface modification significantly enhances the cycle retention from 71.8% to 87.1% at 1 C after 100 cycles due to the construction of a uniform boron-rich cathode/electrolyte interface (CEI) layer. The specific composition of the as-formed CEI film is clearly identified. The analysis results of B and W modifications show that the presence of boron-rich CEI and Li2WO4 coating layer protects the particles from electrolyte erosion under high voltage and enhances lithium-ion diffusion on the particle surface. Therefore, the chemical states of Ni within the particle for B- and W-modified samples are distributed more homogeneously after long cycling.
科研通智能强力驱动
Strongly Powered by AbleSci AI