清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Game-Theoretic Analysis for Green R&D Investment Strategies in the Vehicle Market

斯塔克伯格竞赛 投资(军事) 原设备制造商 博弈论 产业组织 投资策略 市场份额 业务 投资回报率 进化稳定策略 环境经济学 经济 微观经济学 计算机科学 营销 操作系统 政治 利润(经济学) 政治学 法学 生产(经济)
作者
Zhanghao Yao,Yukun Cheng,Jinmian Chen,Xueli Cui
出处
期刊:Asia-Pacific Journal of Operational Research [World Scientific]
卷期号:40 (05) 被引量:2
标识
DOI:10.1142/s021759592340016x
摘要

With the implementation of new environmental policies such as “carbon peak” and “carbon neutrality”, reducing carbon emissions through the development of clean technology in the automobile industry has become a key priority. However, the high cost of researching and developing green technology has led to high vehicle prices, which poses a major barrier to expanding the market share of such vehicles. The decision of whether to invest in research and development (R&D) has become a challenging one for automobile manufacturers. In this paper, we propose a game theory analysis scheme to study the R&D investment decisions of two original equipment manufacturers (OEMs) — an electric vehicle manufacturer (EM) and a fuel vehicle manufacturer (FM) — who, respectively, produce electric vehicles (EVs) and fuel vehicles (FVs). Since the manufacturers exhibit bounded rationality and their R&D investment decision-making involves a long-term, continuously learning and adjusting process, we model this dynamic R&D investment decision-making process as an evolutionary game to study manufacturers’ stable evolutionary behaviors in optimal R&D investment strategies. Different from previous literatures, where the prices for vehicles with high or low R&D investment were predetermined, we optimize the price of each vehicle, market shares, and optimal utilities of OEMs using a two-stage Stackelberg game for each investment strategy profile. Additionally, we use the Personal Carbon Trading (PCT) mechanism to help reduce carbon emissions. The main contribution of this paper is exploring the conditions for the evolutionary stable strategies (ESSs) of the evolutionary game based on the optimal utilities of the OEMs under different strategy profiles. The impact of preference parameters and green R&D coefficients on the OEMs’ decisions, as well as consumers’ purchase choices are also discussed. Finally, numerical simulations using real-world data are conducted to verify the theoretical results on ESSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
altair完成签到 ,获得积分10
5秒前
LINDENG2004完成签到 ,获得积分10
8秒前
ArkZ完成签到 ,获得积分0
10秒前
忧郁如柏完成签到,获得积分10
11秒前
韶绍完成签到 ,获得积分10
13秒前
fanssw完成签到 ,获得积分0
15秒前
whuhustwit完成签到,获得积分10
22秒前
赵一完成签到 ,获得积分10
25秒前
斯文绿凝完成签到,获得积分10
28秒前
dx完成签到,获得积分10
38秒前
雪茶完成签到 ,获得积分10
43秒前
debu9完成签到,获得积分10
43秒前
开心向真完成签到,获得积分10
48秒前
好好好完成签到 ,获得积分10
48秒前
秋迎夏完成签到,获得积分10
53秒前
111完成签到 ,获得积分10
1分钟前
lpp完成签到 ,获得积分10
1分钟前
ppapp完成签到 ,获得积分10
1分钟前
zhangnan完成签到 ,获得积分10
1分钟前
1分钟前
roger完成签到 ,获得积分10
1分钟前
Magali发布了新的文献求助80
1分钟前
淳于惜雪完成签到 ,获得积分10
1分钟前
坦率的从波完成签到 ,获得积分0
1分钟前
as完成签到 ,获得积分10
1分钟前
SciGPT应助千里草采纳,获得10
1分钟前
WSY完成签到 ,获得积分10
1分钟前
1分钟前
酷炫的煎饼完成签到 ,获得积分10
1分钟前
ChiahaoKuo完成签到 ,获得积分10
1分钟前
yzq完成签到,获得积分20
2分钟前
Amy完成签到 ,获得积分10
2分钟前
2分钟前
果酱发布了新的文献求助10
2分钟前
yzq关注了科研通微信公众号
2分钟前
自然亦凝完成签到,获得积分10
2分钟前
浮游应助求助的小鸟采纳,获得10
2分钟前
2分钟前
一通百通发布了新的文献求助30
2分钟前
果酱完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079238
求助须知:如何正确求助?哪些是违规求助? 4297595
关于积分的说明 13388491
捐赠科研通 4120645
什么是DOI,文献DOI怎么找? 2256742
邀请新用户注册赠送积分活动 1261052
关于科研通互助平台的介绍 1194981