作者
Ekene Mark‐Anthony Iheshiulo,Francis J. Larney,Guillermo Hernandez‐Ramirez,Mervin St. Luce,Kui Liu,Henry Wai Chau
摘要
Crop management practices such as rotation, as well as climatic and edaphic factors, modulate soil physical health. However, the overall magnitude of crop rotation benefits on soil physical health properties across a broad range of different conditions remains uncertain. To address this, we conducted a meta-analysis on 865 paired comparisons from 148 rotation studies to examine i) how crop diversity affected soil physical health properties: bulk density, aggregate stability, porosity, infiltration rate, and saturated hydraulic conductivity, and ii) how management practices, climatic, and edaphic factors influenced crop diversity effects. Overall, increased crop diversity (i.e., number of crop species in the rotation) significantly reduced bulk density (−1.6 ± 1.3%), enhanced soil aggregation (15.9 ± 12.7%), improved porosity (3.1 ± 2.0%), and saturated hydraulic conductivity (112.8 ± 57.9%), but did not significantly change infiltration rate (92.2 ± 98.7%) compared to less diverse systems. Compared to using conventional tillage and cereals-only rotations, diverse rotations combined with conservation tillage or including grain legumes performed even better in enhancing both soil aggregation and porosity. Diverse crop rotations managed for 5–10 yr showed greater benefits in regions experiencing mean annual precipitation > 900 mm, and in medium- and fine-textured soils. Among soil physical health properties, saturated hydraulic conductivity was the most responsive to management practices. Based on this meta-analysis, we conclude that rotations including diverse crop species and grain legumes, managed under conservation tillage are best for improving soil physical health, and thus should be considered when designing and developing sustainable cropping systems that promote soil health, system resilience, and crop productivity.