亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrated Forecasting Models Based on LSTM and TCN for Short-Term Electricity Load Forecasting

计算机科学 期限(时间) 概率预测 可靠性(半导体) 短时记忆 电力系统 理论(学习稳定性) 人工智能 功率(物理) 机器学习 人工神经网络 循环神经网络 工程类 电气工程 物理 量子力学 概率逻辑
作者
Kaiwen Zuo
标识
DOI:10.1109/eecr56827.2023.10149951
摘要

Electricity load forecasting is an important prerequisite for ensuring the stability and reliability of regional power systems. Researchers have proposed many combined forecasting models, but most of them cannot capture the global characteristics of the data properly. To further improve the accuracy of short-term power load forecasting, this paper proposes a combined forecasting model based on long short-term memory (LSTM) and temporal convolutional network (TCN). For the electricity load data, the LSTM forecasting model and TCN forecasting model are first established, and then the output results of LSTM and TCN are weighted together according to the inverse squared error ratio to obtain the combined LSTM-TCN forecasting model. The LSTM-TCN model has more advanced model performance and its error is significantly lower than that of the single forecasting model and other classical network models. The results show that the LSTM-TCN model has higher accuracy in short-term load forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
顺颂时祺发布了新的文献求助10
6秒前
9秒前
35秒前
FG发布了新的文献求助10
39秒前
42秒前
46秒前
tt完成签到,获得积分20
46秒前
tt发布了新的文献求助10
49秒前
ceeray23发布了新的文献求助30
50秒前
53秒前
ho应助科研通管家采纳,获得10
54秒前
ho应助科研通管家采纳,获得10
54秒前
kentonchow应助气945采纳,获得10
54秒前
1分钟前
学术小菜鸟完成签到 ,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
洁净的千凡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Alice发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Shawn发布了新的文献求助10
1分钟前
Alice完成签到,获得积分20
2分钟前
cao_bq完成签到,获得积分10
2分钟前
2分钟前
2分钟前
genius_yue发布了新的文献求助30
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
ho应助科研通管家采纳,获得10
2分钟前
3分钟前
hsj完成签到,获得积分10
3分钟前
genius_yue完成签到,获得积分10
3分钟前
3分钟前
潇洒的月光完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376400
求助须知:如何正确求助?哪些是违规求助? 4501498
关于积分的说明 14013106
捐赠科研通 4409293
什么是DOI,文献DOI怎么找? 2422135
邀请新用户注册赠送积分活动 1414947
关于科研通互助平台的介绍 1391827