Disagreement Matters: Exploring Internal Diversification for Redundant Attention in Generic Facial Action Analysis

计算机科学 面部表情 人工智能 情感计算 模式 多元化(营销策略) 机器学习 社会科学 营销 社会学 业务
作者
Xiaotian Li,Zheng Zhang,Xiang Zhang,Taoyue Wang,Zhihua Li,Huiyuan Yang,Umur Aybars Çiftçi,Qiang Ji,Jeffrey F. Cohn,Lijun Yin
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:5
标识
DOI:10.1109/taffc.2023.3286838
摘要

This paper demonstrates the effectiveness of a diversification mechanism for building a more robust multi-attention system in generic facial action analysis. While previous multi-attention (e.g., visual attention and self-attention) research on facial expression recognition (FER) and Action Unit (AU) detection have been thoroughly studied to focus on ”external attention diversification”, where attention branches localize different facial areas, we delve into the realm of ”internal attention diversification” and explore the impact of diverse attention patterns within the same Region of Interest (RoI). Our experiments reveal that variability in attention patterns significantly impacts model performance, indicating that unconstrained multi-attention plagued by redundancy and over-parameterization, leading to sub-optimal results. To tackle this issue, we propose a compact module that guides the model to achieve self-diversified multi-attention. Our method is applied to both CNN-based and Transformer-based models, benchmarked on popular databases such as BP4D and DISFA for AU detection, as well as CK+, MMI, BU-3DFE, and BP4D+ for facial expression recognition. We also evaluate the mechanism on Self-attention and Channel-wise attention designs for improving their adaptive capabilities in multi-modal feature fusion tasks. The multi-modal evaluation is conducted on BP4D, BP4D+, and our newly developed large-scale comprehensive emotion database BP4D++, which contains well-synchronized and aligned sensor modalities, addressing the scarcity of annotations and identities in human affective computing. We plan to release the new database to the research community, fostering further advancements in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃甜汽水发布了新的文献求助10
刚刚
情怀应助甜美的雁开采纳,获得10
2秒前
fmx完成签到,获得积分10
6秒前
迅速的婷冉完成签到,获得积分10
7秒前
9秒前
李爱国应助郝宝真采纳,获得10
13秒前
Amor完成签到,获得积分10
13秒前
13秒前
完美世界应助小鬼采纳,获得10
14秒前
15秒前
苍山洱海旁完成签到 ,获得积分10
16秒前
星辰大海应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得30
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
zhikaiyici应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得200
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
梧桐的灯完成签到,获得积分10
22秒前
真龙狂婿完成签到,获得积分10
23秒前
25秒前
跟屁虫完成签到,获得积分10
27秒前
28秒前
可口可乐发布了新的文献求助10
28秒前
春夏爱科研完成签到,获得积分10
29秒前
屁颠屁颠_狼完成签到 ,获得积分0
30秒前
DCW完成签到 ,获得积分10
30秒前
30秒前
嘻嘻印完成签到,获得积分10
31秒前
iWatchTheMoon应助mokosk采纳,获得10
32秒前
小聪发布了新的文献求助10
33秒前
35秒前
37秒前
科目三应助鲁滨逊采纳,获得10
38秒前
NPC-CBI完成签到,获得积分10
39秒前
雨木目完成签到,获得积分10
39秒前
杨乃彬完成签到,获得积分10
40秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163007
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902812
捐赠科研通 2473633
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187