A decision support model for evaluating risks in the digital economy transformation of the manufacturing industry

数字化转型 数字经济 波动性(金融) 背景(考古学) 工业4.0 产业组织 商业模式 业务 制造业 比例(比率) 风险分析(工程) 经济 计算机科学 经济 营销 计量经济学 物理 万维网 嵌入式系统 古生物学 生物 量子力学
作者
Chao Shang,Jian Jiang,Lei Zhu,Parvaneh Saeidi
出处
期刊:Journal of Innovation & Knowledge [Elsevier]
卷期号:8 (3): 100393-100393 被引量:3
标识
DOI:10.1016/j.jik.2023.100393
摘要

In recent decades, digital technologies have seriously changed socioeconomic systems on a global scale. Unfortunately, consequential issues have remained mostly uninvestigated. The literature lacks research into the risks that may arise in the procedure of developing digital capabilities that have considerable impacts on firms’ innovative growth. In addition, inadequate research has been conducted on challenges that may arise when a business is being developed in the context of the digital economy. Moreover, the advent of new risks specific to the digital economy has not been addressed in the overall system of modern economic relations. As a result, the current study aims to investigate the major areas of relevance to transforming companies into the digital economy, considering the impacts of new risks encountered during such transitions. Along this line, this paper develops a decision support model for evaluating risks in the digital economy transformation of the manufacturing industry. This approach is applied to compute the weights and the study ranks the most important risks for digital economy transformation in the manufacturing industry. In addition, the proposed method model is implemented to find industries’ priorities of different risks for the digital economy transformation of the manufacturing industry. Finally, a case study is carried out to assess the most important risk for the digital transformation of the manufacturing industry. The results show that lack of top management involvement (f7), with a weight of 0.0563, an unstable market environment in terms of the uncertainty industry, and market volatility, with a weight of 0.0542, are the most considerable risks for the digital economy transformation (DET) of the manufacturing industry. Additionally, comparison and sensitivity analyses are made to illustrate the advantage of the presented approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归未完成签到,获得积分10
1秒前
yufanhui应助ies77采纳,获得10
2秒前
酱攸完成签到,获得积分10
2秒前
MRzzzzz发布了新的文献求助30
3秒前
医平青云发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
奕初阳完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
奋斗的猪完成签到 ,获得积分10
6秒前
愉快无施发布了新的文献求助10
6秒前
7秒前
8秒前
不配.应助猪在海中游采纳,获得10
8秒前
8秒前
sherrycofe应助zzz采纳,获得10
8秒前
8秒前
8秒前
9秒前
聂学雨发布了新的文献求助10
9秒前
10秒前
10秒前
白白完成签到,获得积分10
10秒前
11秒前
hiahia发布了新的文献求助10
11秒前
12秒前
包容友儿完成签到,获得积分10
12秒前
平凡世界关注了科研通微信公众号
12秒前
13秒前
橘子发布了新的文献求助20
13秒前
长孙兰溪发布了新的文献求助10
14秒前
谁说不许吃饭完成签到 ,获得积分10
14秒前
张翔宇发布了新的文献求助10
14秒前
宁安发布了新的文献求助10
15秒前
yufanhui应助ies77采纳,获得50
15秒前
15秒前
多边形发布了新的文献求助10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135577
求助须知:如何正确求助?哪些是违规求助? 2786454
关于积分的说明 7777484
捐赠科研通 2442441
什么是DOI,文献DOI怎么找? 1298558
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847