Auto-attention mechanism for multi-view deep embedding clustering

观点 计算机科学 深度学习 人工智能 聚类分析 机器学习 嵌入 人工神经网络 多样性(控制论) 数据挖掘 艺术 视觉艺术
作者
Bassoma Diallo,Jie Hu,Tianrui Li,Ghufran Ahmad Khan,Xinyan Liang,Hongjun Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:143: 109764-109764 被引量:2
标识
DOI:10.1016/j.patcog.2023.109764
摘要

In several fields, deep learning has achieved tremendous success. Multi-view learning is a workable method for handling data from several sources. For clustering multi-view data, deep learning and multi-view learning are excellent options. However, a persistent challenge is a need for the current deep learning approach to independently drive divergent neural networks for different perspectives while working with multi-view data. The current methods use the number of viewpoints to calculate neural network statistics. Consequently, as the number of views rises, it results in a considerable calculation. Furthermore, they vainly try to unite various viewpoints at the training. Incorporating a triple fusion technique, this research suggests an innovative multi-view deep embedding clustering (MDEC) model. The suggested model can jointly acquire the specific knowledge in each view as well as the information fragment of the collective views. The main goal of the MDEC is to lower the errors made when learning the features of each view and correlating data from many views. To address the optimization problem, the MDEC model advises a suitable iterative updating approach. In testing modern deep learning and non-deep learning algorithms, the experimental study on small and large-scale multi-view data shows encouraging results for the MDEC model. In multi-view clustering, this work demonstrates the benefit of the deep learning-based approach over the non-ones. However, future work will address a variety of issues related to MDEC including the speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光电效应完成签到,获得积分10
刚刚
项之桃完成签到,获得积分10
2秒前
taotao发布了新的文献求助10
2秒前
充电宝应助阿中采纳,获得10
2秒前
程之杭发布了新的文献求助10
2秒前
Strive发布了新的文献求助10
3秒前
Kk发布了新的文献求助10
3秒前
dachengzi完成签到,获得积分10
4秒前
消消消消气完成签到 ,获得积分10
4秒前
Niko完成签到,获得积分10
4秒前
周少发布了新的文献求助10
4秒前
edenz完成签到,获得积分10
4秒前
狗儿吖完成签到,获得积分10
5秒前
郝煜祺完成签到,获得积分10
5秒前
24完成签到,获得积分10
6秒前
6秒前
疯狂的科研小羊完成签到,获得积分10
6秒前
keyan完成签到 ,获得积分10
6秒前
wanci应助Majoe采纳,获得10
7秒前
傲娇颖完成签到,获得积分10
7秒前
舒服的元瑶完成签到 ,获得积分10
7秒前
老麦完成签到,获得积分10
8秒前
bluehand完成签到,获得积分10
9秒前
membrane完成签到,获得积分10
9秒前
许诺完成签到,获得积分10
9秒前
魔幻若血完成签到,获得积分10
10秒前
张馨友完成签到,获得积分10
12秒前
fighting完成签到,获得积分10
12秒前
12334完成签到,获得积分10
12秒前
可可完成签到,获得积分10
13秒前
星辰大海应助小何同学采纳,获得10
13秒前
hzhang完成签到,获得积分10
13秒前
李健应助hanzhenzhen采纳,获得10
13秒前
趋交发布了新的文献求助10
14秒前
NexusExplorer应助wang采纳,获得10
14秒前
汉堡包应助小蚊子采纳,获得10
14秒前
能干的邹完成签到 ,获得积分10
15秒前
忐忑的小玉完成签到,获得积分10
15秒前
15秒前
dd完成签到 ,获得积分10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248973
求助须知:如何正确求助?哪些是违规求助? 2892360
关于积分的说明 8270969
捐赠科研通 2560642
什么是DOI,文献DOI怎么找? 1389143
科研通“疑难数据库(出版商)”最低求助积分说明 651004
邀请新用户注册赠送积分活动 627869