Auto-attention mechanism for multi-view deep embedding clustering

观点 计算机科学 深度学习 人工智能 聚类分析 机器学习 嵌入 人工神经网络 多样性(控制论) 数据挖掘 艺术 视觉艺术
作者
Bassoma Diallo,Jie Hu,Tianrui Li,Ghufran Ahmad Khan,Xinyan Liang,Hongjun Wang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:143: 109764-109764 被引量:2
标识
DOI:10.1016/j.patcog.2023.109764
摘要

In several fields, deep learning has achieved tremendous success. Multi-view learning is a workable method for handling data from several sources. For clustering multi-view data, deep learning and multi-view learning are excellent options. However, a persistent challenge is a need for the current deep learning approach to independently drive divergent neural networks for different perspectives while working with multi-view data. The current methods use the number of viewpoints to calculate neural network statistics. Consequently, as the number of views rises, it results in a considerable calculation. Furthermore, they vainly try to unite various viewpoints at the training. Incorporating a triple fusion technique, this research suggests an innovative multi-view deep embedding clustering (MDEC) model. The suggested model can jointly acquire the specific knowledge in each view as well as the information fragment of the collective views. The main goal of the MDEC is to lower the errors made when learning the features of each view and correlating data from many views. To address the optimization problem, the MDEC model advises a suitable iterative updating approach. In testing modern deep learning and non-deep learning algorithms, the experimental study on small and large-scale multi-view data shows encouraging results for the MDEC model. In multi-view clustering, this work demonstrates the benefit of the deep learning-based approach over the non-ones. However, future work will address a variety of issues related to MDEC including the speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lee发布了新的文献求助10
刚刚
微风低回完成签到,获得积分10
刚刚
无误发布了新的文献求助50
刚刚
刚刚
Lartyrs完成签到,获得积分10
1秒前
ioio发布了新的文献求助20
3秒前
boogie发布了新的文献求助30
5秒前
7秒前
科研通AI2S应助快乐的小宛采纳,获得10
8秒前
英俊的铭应助是草莓采纳,获得10
8秒前
刻苦的黑米完成签到,获得积分10
8秒前
9秒前
comic发布了新的文献求助10
10秒前
10秒前
Yy杨优秀发布了新的文献求助10
11秒前
拘礼夫人完成签到,获得积分10
12秒前
英姑应助hying采纳,获得10
12秒前
12秒前
13秒前
zz发布了新的文献求助10
14秒前
14秒前
行7发布了新的文献求助10
14秒前
耀阳发布了新的文献求助10
14秒前
zhang发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
卓矢发布了新的文献求助10
18秒前
天才小能喵完成签到 ,获得积分0
18秒前
19秒前
19秒前
难过千易完成签到,获得积分10
19秒前
元气小Liu关注了科研通微信公众号
20秒前
20秒前
ioio发布了新的文献求助20
21秒前
21秒前
无语的断缘完成签到,获得积分10
21秒前
三斤发布了新的文献求助10
22秒前
鹿茸儿发布了新的文献求助10
22秒前
FRANKFANG发布了新的文献求助30
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998784
求助须知:如何正确求助?哪些是违规求助? 3538262
关于积分的说明 11273791
捐赠科研通 3277260
什么是DOI,文献DOI怎么找? 1807481
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075