Auto-attention mechanism for multi-view deep embedding clustering

观点 计算机科学 深度学习 人工智能 聚类分析 机器学习 嵌入 人工神经网络 多样性(控制论) 数据挖掘 艺术 视觉艺术
作者
Bassoma Diallo,Jie Hu,Tianrui Li,Ghufran Ahmad Khan,Xinyan Liang,Hongjun Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:143: 109764-109764 被引量:2
标识
DOI:10.1016/j.patcog.2023.109764
摘要

In several fields, deep learning has achieved tremendous success. Multi-view learning is a workable method for handling data from several sources. For clustering multi-view data, deep learning and multi-view learning are excellent options. However, a persistent challenge is a need for the current deep learning approach to independently drive divergent neural networks for different perspectives while working with multi-view data. The current methods use the number of viewpoints to calculate neural network statistics. Consequently, as the number of views rises, it results in a considerable calculation. Furthermore, they vainly try to unite various viewpoints at the training. Incorporating a triple fusion technique, this research suggests an innovative multi-view deep embedding clustering (MDEC) model. The suggested model can jointly acquire the specific knowledge in each view as well as the information fragment of the collective views. The main goal of the MDEC is to lower the errors made when learning the features of each view and correlating data from many views. To address the optimization problem, the MDEC model advises a suitable iterative updating approach. In testing modern deep learning and non-deep learning algorithms, the experimental study on small and large-scale multi-view data shows encouraging results for the MDEC model. In multi-view clustering, this work demonstrates the benefit of the deep learning-based approach over the non-ones. However, future work will address a variety of issues related to MDEC including the speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
king2580完成签到,获得积分20
1秒前
李琦发布了新的文献求助10
1秒前
星业辰完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
duang完成签到,获得积分10
2秒前
自由天荷完成签到,获得积分10
2秒前
Jenny发布了新的文献求助10
3秒前
3秒前
香蕉觅云应助Jankin采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
77发布了新的文献求助10
4秒前
广广广渠路完成签到,获得积分10
4秒前
叶叶叶完成签到,获得积分10
4秒前
Owen应助杨震采纳,获得30
5秒前
6秒前
KAGUYA发布了新的文献求助20
6秒前
嘻哈哈完成签到,获得积分10
6秒前
独特伟泽完成签到,获得积分10
7秒前
JamesPei应助明亮谷波采纳,获得10
7秒前
7秒前
8秒前
爱学习的憨憨鸭完成签到,获得积分10
8秒前
8秒前
qiuwuji完成签到,获得积分10
10秒前
Victoria发布了新的文献求助10
10秒前
11秒前
gfgDADA发布了新的文献求助10
11秒前
Orange应助apong采纳,获得10
12秒前
12秒前
orixero应助Leslie采纳,获得10
12秒前
13秒前
13秒前
GQL发布了新的文献求助10
13秒前
lanminghao完成签到 ,获得积分10
13秒前
酷波er应助小花猫采纳,获得10
13秒前
瓶子发布了新的文献求助10
15秒前
15秒前
ding应助mark707采纳,获得10
15秒前
在水一方应助galaxy采纳,获得30
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743234
求助须知:如何正确求助?哪些是违规求助? 5413106
关于积分的说明 15347071
捐赠科研通 4884098
什么是DOI,文献DOI怎么找? 2625582
邀请新用户注册赠送积分活动 1574482
关于科研通互助平台的介绍 1531345