Vascular signaling plasticity reprograms neurovascular coupling pathways to precisely match energy delivery to neuronal metabolic needs

小动脉 神经科学 生物 运动前神经元活动 细胞生物学 血流 内皮 可塑性 微循环 解剖 生物物理学 内科学 循环系统 医学 内分泌学 材料科学 复合材料
作者
Thomas A Longden,Nick Weir,Lei Xiang,Daniela Celeste García,Houman Qadir,Michael A. Patton,Brian N. Mathur,Fabrice Dabertrand
出处
期刊:Physiology [American Physiological Society]
卷期号:38 (S1)
标识
DOI:10.1152/physiol.2023.38.s1.5731521
摘要

Neuronal computation is metabolically expensive and relies on the timely delivery of energy substrates via tightly controlled blood flow to prevent energetic deficits. The range of mechanisms responsible for this coupling of neural activity to blood flow are collectively termed ‘neurovascular coupling’ (NVC). These NVC mechanisms are typically assumed to be invariant and the possibility that they may be plastic, allowing reshaping of energy delivery according to ever-shifting neuronal metabolic needs, has not been considered. We present evidence that neuronal activity resculpts blood flow control mechanisms inherent to the endothelium, which forms the inner lining of all blood vessels, through a process we refer to as vascular signalling plasticity (VSP). Using an environmental enrichment paradigm, we find that housing mice in an environment that increases input to the barrel cortex drives profound synaptic plasticity within this network. This is accompanied by a remarkable resculpting of local vascular reactivity, augmenting the efficacy of mechanisms that signal for an increase in blood flow. This increase in sensitivity manifests as an increase red blood cell flux to capillary stimulation with extracellular K+, which activates strong inward rectifier K+ (Kir2.1) channel-dependent capillary-to-arteriole electrical signalling to elicit hyperemia. To support this augmentation, we find that VSP induces a ~70% increase in the density of Kir2.1 channels in endothelial cells membranes which is underlain by transcriptional and translational changes in capillary ECs. Using an ex vivo capillary-arteriole preparation, we demonstrate that this increase in membrane Kir2.1 channels translates into a profound shift in the sensitivity of capillaries to K+ stimulation to evoke upstream arteriolar dilation. Together, these results suggest that increasing neuronal energy consumption leads to a profound potentiation of the retrograde hyperpolarization generated by the endothelium during activity, enhancing upstream dilation at the penetrating arteriole and augmenting blood delivery to match enhanced local needs. Our data thus recast the capillary bed as a plastic, brain-wide, neural activity sensing network that is modulated at the molecular level by local neural input. This allows fine-tuning of existing blood delivery mechanisms to meet continually fluctuating neural energy needs. VSP represents a novel facet of brain plasticity that may be utilised by various physiological processes and may be disrupted in aging and in the broad range of brain pathologies that have a vascular component. Support for this work was provided by the NIH National Institute on Aging and National Institute of Neurological Disorders and Stroke (1R01AG066645, 5R01NS115401 [PI: S. Sakadžić], and 1DP2NS121347-01, to T.A.L), the American Heart Association (Awards 17SDG33670237 and 19IPLOI34660108 to T.A.L) and an NIH S10 grant (S10 OD026698, to University of Maryland School of Medicine CIBR Core Confocal Facility). This is the full abstract presented at the American Physiology Summit 2023 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南大研究生完成签到 ,获得积分10
刚刚
lareina完成签到 ,获得积分10
刚刚
罗大大完成签到 ,获得积分10
1秒前
秋殇浅寞完成签到,获得积分10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
BitBong完成签到,获得积分10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
3秒前
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
魔幻大有发布了新的文献求助10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
3秒前
bdg发布了新的文献求助20
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
s型异质结应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
易欣乐慰发布了新的文献求助30
5秒前
6秒前
星宫金魁发布了新的文献求助10
7秒前
丘比特应助VV采纳,获得10
7秒前
子羽完成签到,获得积分10
8秒前
薰硝壤应助念川采纳,获得10
8秒前
8秒前
幸福蓝血完成签到 ,获得积分10
8秒前
背后的秋柳完成签到 ,获得积分10
10秒前
10秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2998259
求助须知:如何正确求助?哪些是违规求助? 2658819
关于积分的说明 7197938
捐赠科研通 2294325
什么是DOI,文献DOI怎么找? 1216550
科研通“疑难数据库(出版商)”最低求助积分说明 593547
版权声明 592904