Exceptional enhancement of mechanical properties in high-entropy alloys via thermodynamically guided local chemical ordering

材料科学 合金 高熵合金 热力学 延展性(地球科学) 退火(玻璃) 立方晶系 组态熵 极限抗拉强度 统计物理学 结晶学 冶金 化学 蠕动 物理
作者
Sriswaroop Dasari,Abhishek Sharma,Chao Jiang,Bharat Gwalani,Wei-Chih Lin,Kai-Chi Lo,Stéphane Gorsse,An‐Chou Yeh,S. Srinivasan,Rajarshi Banerjee
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (23) 被引量:35
标识
DOI:10.1073/pnas.2211787120
摘要

Understanding the local chemical ordering propensity in random solid solutions, and tailoring its strength, can guide the design and discovery of complex, paradigm-shifting multicomponent alloys. First, we present a simple thermodynamic framework, based solely on binary enthalpies of mixing, to select optimal alloying elements to control the nature and extent of chemical ordering in high-entropy alloys (HEAs). Next, we couple high-resolution electron microscopy, atom probe tomography, hybrid Monte-Carlo, special quasirandom structures, and density functional theory calculations to demonstrate how controlled additions of Al and Ti and subsequent annealing drive chemical ordering in nearly random equiatomic face-centered cubic CoFeNi solid solution. We establish that short-range ordered domains, the precursors of long-range ordered precipitates, inform mechanical properties. Specifically, a progressively increasing local order boosts the tensile yield strengths of the parent CoFeNi alloy by a factor of four while also substantially improving ductility, which breaks the so-called strength-ductility paradox. Finally, we validate the generality of our approach by predicting and demonstrating that controlled additions of Al, which has large negative enthalpies of mixing with the constituent elements of another nearly random body-centered cubic refractory NbTaTi HEA, also introduces chemical ordering and enhances mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
asir_xw发布了新的文献求助10
1秒前
2秒前
5秒前
领导范儿应助动人的乾采纳,获得10
5秒前
泛舟荡春心完成签到,获得积分10
5秒前
充电宝应助mqq采纳,获得10
5秒前
超级的鞅发布了新的文献求助10
5秒前
7秒前
7秒前
科研通AI6应助Baibai采纳,获得10
7秒前
WWW发布了新的文献求助10
8秒前
YYZLHMHM应助12138采纳,获得10
8秒前
运气爆棚发布了新的文献求助10
9秒前
howgoods完成签到 ,获得积分10
9秒前
looking完成签到,获得积分10
9秒前
gougoubao完成签到,获得积分10
9秒前
苹果夜梦完成签到 ,获得积分10
10秒前
10秒前
LL爱读书发布了新的文献求助10
10秒前
才是自由发布了新的文献求助10
11秒前
咖小啡完成签到,获得积分10
12秒前
che发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
14秒前
科研通AI6应助我要资料啊采纳,获得10
14秒前
余姚发布了新的文献求助10
16秒前
封芷完成签到,获得积分10
16秒前
dundun完成签到,获得积分10
17秒前
ding应助WWW采纳,获得10
17秒前
ding应助JKSMK采纳,获得10
18秒前
怕孤单的大米完成签到,获得积分10
21秒前
Liu完成签到,获得积分10
21秒前
土豆完成签到,获得积分10
21秒前
小蘑菇应助悲凉的新筠采纳,获得10
22秒前
山花花完成签到,获得积分10
23秒前
华仔应助Yyyyuy采纳,获得10
23秒前
乔乔那个孩子完成签到,获得积分10
23秒前
23秒前
KEYANMINGONG完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469224
求助须知:如何正确求助?哪些是违规求助? 4572331
关于积分的说明 14335257
捐赠科研通 4499207
什么是DOI,文献DOI怎么找? 2464985
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051