Unsupervised machine learning-based multi-attributes fusion dim spot subtle sandstone reservoirs identification utilizing isolation forest

叠前 反演(地质) 储层建模 地质学 鉴定(生物学) 频道(广播) 异常检测 人工智能 模式识别(心理学) 计算机科学 构造盆地 地震学 石油工程 地貌学 计算机网络 植物 生物
作者
Jun Wang,Junxing Cao,Zhege Liu
标识
DOI:10.1016/j.geoen.2023.212626
摘要

Subtle sandstone reservoirs are difficult to identify due to their weak seismic responses. Here, we propose to identify subtle sandstone reservoirs by an unsupervised machine learning-based multi-attribute fusion scheme using prestack seismic data. The proposed scheme carries out seismic attenuation gradient analysis and prestack simultaneous inversion to obtain the attributes that are sensitive to subtle channel sands, and uses them as the selected multiple attributes, and further employs a state-of-the-art unsupervised machine learning algorithm, called isolation forest, for the multi-attribute anomaly detection and analysis to identify subtle sandstone reservoir. To the best of our knowledge, this is the first time to introduce the isolation forest unsupervised anomaly detection algorithm in the reservoir identification. Prestack simultaneous inversion can use multi-angle and multi-scale information as constraints, and the attenuation gradient reflects the body response of the reservoir. For the field seismic data from a subtle channel sandstone reservoir in the western Sichuan basin, China, we found that the proposed scheme has good application effect in identifying subtle reservoirs. The application example demonstrates that the identified results are highly consistent with the actual development results, illustrating the feasibility and effectiveness of this scheme on the characterization for dim spot subtle sandstone reservoirs. This study is hoped to be useful as an aid for reservoir identification for dim spot subtle sandstone reservoirs, as well as to provide a new technical idea and method for reservoir characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追风少年完成签到,获得积分10
2秒前
鲤鱼怀绿完成签到,获得积分10
3秒前
山茶发布了新的文献求助10
5秒前
毕节发布了新的文献求助10
6秒前
6秒前
王ml发布了新的文献求助10
6秒前
伶俐板栗完成签到,获得积分10
7秒前
8秒前
12秒前
Erich发布了新的文献求助10
13秒前
爆米花应助nil采纳,获得10
13秒前
13秒前
陈嘻嘻嘻嘻完成签到,获得积分10
15秒前
Godyo发布了新的文献求助10
17秒前
17秒前
年轻采波完成签到,获得积分10
18秒前
xiaoxie完成签到 ,获得积分10
19秒前
19秒前
20秒前
Jay完成签到,获得积分10
20秒前
HUSHIYI完成签到,获得积分10
20秒前
骑羊发布了新的文献求助20
22秒前
科研通AI2S应助大白采纳,获得10
25秒前
阳光友蕊完成签到 ,获得积分10
26秒前
陈橙发布了新的文献求助20
26秒前
28秒前
Faye完成签到 ,获得积分10
29秒前
哇哈哈哈哈哈完成签到,获得积分20
29秒前
沉默老四完成签到,获得积分20
31秒前
Penny完成签到 ,获得积分10
31秒前
Godyo完成签到,获得积分10
32秒前
32秒前
tjr完成签到,获得积分10
32秒前
33秒前
Akim应助Manyiu采纳,获得10
33秒前
33秒前
快乐应助张豪杰采纳,获得10
34秒前
刘科江发布了新的文献求助10
34秒前
tianzml0举报求助违规成功
35秒前
加菲丰丰举报求助违规成功
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175