Unsupervised machine learning-based multi-attributes fusion dim spot subtle sandstone reservoirs identification utilizing isolation forest

叠前 反演(地质) 储层建模 地质学 鉴定(生物学) 频道(广播) 异常检测 人工智能 模式识别(心理学) 计算机科学 构造盆地 地震学 石油工程 地貌学 植物 生物 计算机网络
作者
Jun Wang,Junxing Cao,Zhege Liu
标识
DOI:10.1016/j.geoen.2023.212626
摘要

Subtle sandstone reservoirs are difficult to identify due to their weak seismic responses. Here, we propose to identify subtle sandstone reservoirs by an unsupervised machine learning-based multi-attribute fusion scheme using prestack seismic data. The proposed scheme carries out seismic attenuation gradient analysis and prestack simultaneous inversion to obtain the attributes that are sensitive to subtle channel sands, and uses them as the selected multiple attributes, and further employs a state-of-the-art unsupervised machine learning algorithm, called isolation forest, for the multi-attribute anomaly detection and analysis to identify subtle sandstone reservoir. To the best of our knowledge, this is the first time to introduce the isolation forest unsupervised anomaly detection algorithm in the reservoir identification. Prestack simultaneous inversion can use multi-angle and multi-scale information as constraints, and the attenuation gradient reflects the body response of the reservoir. For the field seismic data from a subtle channel sandstone reservoir in the western Sichuan basin, China, we found that the proposed scheme has good application effect in identifying subtle reservoirs. The application example demonstrates that the identified results are highly consistent with the actual development results, illustrating the feasibility and effectiveness of this scheme on the characterization for dim spot subtle sandstone reservoirs. This study is hoped to be useful as an aid for reservoir identification for dim spot subtle sandstone reservoirs, as well as to provide a new technical idea and method for reservoir characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qzj发布了新的文献求助10
1秒前
小乐发布了新的文献求助10
3秒前
Q清风慕竹发布了新的文献求助10
4秒前
4秒前
nojivv完成签到,获得积分10
4秒前
Litm完成签到 ,获得积分10
5秒前
6秒前
kita完成签到,获得积分10
6秒前
qzj完成签到,获得积分10
6秒前
7秒前
LIKUN完成签到,获得积分10
7秒前
用心若镜2完成签到,获得积分10
8秒前
marry完成签到,获得积分10
9秒前
褪色发布了新的文献求助10
10秒前
枫落无霜发布了新的文献求助10
11秒前
11秒前
marry发布了新的文献求助10
12秒前
用心若镜2发布了新的文献求助10
12秒前
Jackie发布了新的文献求助10
16秒前
susu完成签到,获得积分10
19秒前
上官若男应助枫落无霜采纳,获得10
20秒前
24秒前
25秒前
7123完成签到,获得积分20
26秒前
酷波er应助尘南浔采纳,获得10
27秒前
29秒前
GSQ发布了新的文献求助10
29秒前
丘比特应助caicai采纳,获得10
29秒前
lin发布了新的文献求助10
30秒前
书包王完成签到,获得积分10
30秒前
31秒前
921发布了新的文献求助10
31秒前
31秒前
32秒前
32秒前
深情世立发布了新的文献求助10
32秒前
忐忑的天真完成签到 ,获得积分10
34秒前
Amiee发布了新的文献求助10
35秒前
Akim应助GSQ采纳,获得10
36秒前
36秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707920
求助须知:如何正确求助?哪些是违规求助? 3256447
关于积分的说明 9900200
捐赠科研通 2969011
什么是DOI,文献DOI怎么找? 1628271
邀请新用户注册赠送积分活动 772038
科研通“疑难数据库(出版商)”最低求助积分说明 743611