摘要
Chapter 22 Modeling the Structures of Ternary Complexes Mediated by Molecular Glues Michael L. Drummond, Michael L. Drummond Chemical Computing Group, Montreal, Quebec, H3A 2R7 CanadaSearch for more papers by this author Michael L. Drummond, Michael L. Drummond Chemical Computing Group, Montreal, Quebec, H3A 2R7 CanadaSearch for more papers by this author Book Editor(s):Vasanthanathan Poongavanam, Vasanthanathan Poongavanam Uppsala University, Uppsala, 75105 SwedenSearch for more papers by this authorVijayan Ramaswamy, Vijayan Ramaswamy Univ. Texas MD Anderson Cancer Center, Houston, 77054 United StatesSearch for more papers by this author First published: 19 January 2024 https://doi.org/10.1002/9783527840748.ch22 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary The term "molecular glue" (abbreviated hereafter as MG) was first coined in 1992 by Stuart Schreiber to describe how the macrocyclic natural products cyclosporin A, rapamycin, and FK506 induce the formation of ternary complexes (i.e. complexes made from three components). In this chapter, the authors describe the extension of the PROTAC modeling techniques to predict the structure of ternary complexes mediated by MGs. Two distinct approaches are detailed. The first approach treats MGs as they are commonly conceptualized – as whole, indivisible molecules, placed via small molecule docking at protein–protein interfaces (PPIs), which are themselves predicted by protein–protein docking. The second approach instead treats MGs as "linkerless PROTACs," i.e. as molecules that, despite their nominal monovalency, can be partitioned into two binding parts, each of which can be viewed as primarily interacting with just one of the proteins in the ternary complex. References Schreiber , S.L. ( 1992 ). Immunophilin-sensitive protein phosphatase action in cell signaling pathways . Cell 70 : 365 – 368 . 10.1016/0092-8674(92)90158-9 CASPubMedWeb of Science®Google Scholar Huai , Q. et al. Crystal structure of calcineurin–cyclophilin–cyclosporin shows common but distinct recognition of immunophilin–drug complexes . Google Scholar Fischer , E.S. et al. ( 2014 ). Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide . Nature 512 : 49 – 53 . 10.1038/nature13527 CASPubMedWeb of Science®Google Scholar Sasso , J.M. et al. ( 2022 ). Molecular glues: the adhesive connecting targeted protein degradation to the clinic . Biochemistry https://doi.org/10.1021/acs.biochem.2c00245 . 10.1021/acs.biochem.2c00245 PubMedWeb of Science®Google Scholar Donovan , D.H. , Luh , L.M. , and Cromm , P.M. ( 2023 ). Targeted protein degradation – the story so far . In: Inducing Targeted Protein Degradation (ed. P. Cromm ), 1 – 24 . Wiley . https://doi.org/10.1002/9783527836208.ch1 . 10.1002/9783527836208.ch1 Google Scholar Bussiere , D.E. et al. ( 2020 ). Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex . Nat. Chem. Biol. 16 : 15 – 23 . 10.1038/s41589-019-0411-6 CASPubMedWeb of Science®Google Scholar Winter , G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation . Google Scholar Lu , J. et al. ( 2015 ). Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4 . Chem. Biol. 22 : 755 – 763 . 10.1016/j.chembiol.2015.05.009 CASPubMedWeb of Science®Google Scholar Sakamoto , K.M. et al. ( 2001 ). Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation . Proc. Natl. Acad. Sci. U S A 98 : 8554 – 8559 . 10.1073/pnas.141230798 CASPubMedWeb of Science®Google Scholar Zengerle , M. , Chan , K.-H. , and Ciulli , A. ( 2015 ). Selective small molecule induced degradation of the bet bromodomain protein BRD4 . ACS Chem. Biol. 10 : 1770 – 1777 . 10.1021/acschembio.5b00216 CASPubMedWeb of Science®Google Scholar Che , Y. , Gilbert , A.M. , Shanmugasundaram , V. , and Noe , M.C. ( 2018 ). Inducing protein-protein interactions with molecular glues . Bioorg. Med. Chem. Lett. 28 : 2585 – 2592 . 10.1016/j.bmcl.2018.04.046 CASPubMedWeb of Science®Google Scholar Mullard , A. ( 2021 ). Targeted protein degraders crowd into the clinic . Nat. Rev. Drug Discov. 20 : 247 – 250 . 10.1038/d41573-021-00052-4 CASPubMedWeb of Science®Google Scholar Gadd , M.S. et al. ( 2017 ). Structural basis of PROTAC cooperative recognition for selective protein degradation . Nat. Chem. Biol. 13 : 514 – 521 . 10.1038/nchembio.2329 CASPubMedWeb of Science®Google Scholar Sun , X. et al. ( 2019 ). PROTACs: great opportunities for academia and industry . Signal Transduct. Target. Ther. 4 : 64 . 10.1038/s41392-019-0101-6 PubMedWeb of Science®Google Scholar Weng , G. et al. ( 2021 ). PROTAC-DB: an online database of PROTACs . Nucleic Acids Res. 49 : D1381 – D1387 . 10.1093/nar/gkaa807 CASPubMedWeb of Science®Google Scholar Dong , G. , Ding , Y. , He , S. , and Sheng , C. ( 2021 ). Molecular glues for targeted protein degradation: from serendipity to rational discovery . J. Med. Chem. 64 : 10606 – 10620 . 10.1021/acs.jmedchem.1c00895 CASPubMedWeb of Science®Google Scholar Drummond , M.L. and Williams , C.I. ( 2019 ). In silico modeling of PROTAC-mediated ternary complexes: validation and application . J. Chem. Inf. Model. 59 : 1634 – 1644 . 10.1021/acs.jcim.8b00872 CASPubMedWeb of Science®Google Scholar Drummond , M.L. , Henry , A. , Li , H. , and Williams , C.I. ( 2020 ). Improved accuracy for modeling PROTAC-mediated ternary complex formation and targeted protein degradation via new in silico methodologies . J. Chem. Inf. Model. 60 : 5234 – 5254 . 10.1021/acs.jcim.0c00897 CASPubMedWeb of Science®Google Scholar Molecular Operating Environment (MOE). Google Scholar Petzold , G. , Fischer , E.S. , and Thomä , N.H. ( 2016 ). Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase . Nature 532 : 127 – 130 . 10.1038/nature16979 CASPubMedWeb of Science®Google Scholar Matyskiela , M.E. et al. ( 2016 ). A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase . Nature 535 : 252 – 257 . 10.1038/nature18611 CASPubMedWeb of Science®Google Scholar Sievers , Q.L. et al. ( 2018 ). Defining the human C 2 H 2 zinc finger degrome targeted by thalidomide analogs through CRBN . Science 362 , eaat0572. 10.1126/science.aat0572 PubMedWeb of Science®Google Scholar Matyskiela , M.E. et al. ( 2020 ). Crystal structure of the SALL4–pomalidomide–cereblon–DDB1 complex . Nat. Struct. Mol. Biol. 27 : 319 – 322 . 10.1038/s41594-020-0405-9 CASPubMedWeb of Science®Google Scholar Surka , C. et al. ( 2021 ). CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells . Blood 137 : 661 – 677 . 10.1182/blood.2020008676 CASPubMedGoogle Scholar Furihata , H. et al. ( 2020 ). Structural bases of IMiD selectivity that emerges by 5-hydroxythalidomide . Nat. Commun. 11 : 4578 . 10.1038/s41467-020-18488-4 CASPubMedWeb of Science®Google Scholar Du , X. et al. ( 2019 ). Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820 . Structure 27 , 1625-1633.e3. 10.1016/j.str.2019.10.005 Web of Science®Google Scholar Faust , T.B. et al. ( 2020 ). Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15 . Nat. Chem. Biol. 16 : 7 – 14 . 10.1038/s41589-019-0378-3 CASPubMedWeb of Science®Google Scholar Guillory , X. et al. ( 2020 ). Fragment-based differential targeting of PPI stabilizer interfaces . J. Med. Chem. 63 : 6694 – 6707 . 10.1021/acs.jmedchem.9b01942 CASPubMedWeb of Science®Google Scholar Watson , E.R. et al. ( 2022 ). Molecular glue CELMoD compounds are regulators of cereblon conformation . Science 378 : 549 – 553 . 10.1126/science.add7574 CASPubMedWeb of Science®Google Scholar Jumper , J. et al. ( 2021 ). Highly accurate protein structure prediction with AlphaFold . Nature 596 : 583 – 589 . 10.1038/s41586-021-03819-2 CASPubMedWeb of Science®Google Scholar Soga , S. , Shirai , H. , Kobori , M. , and Hirayama , N. ( 2007 ). Use of amino acid composition to predict ligand-binding sites . J. Chem. Inf. Model. 47 : 400 – 406 . 10.1021/ci6002202 CASPubMedWeb of Science®Google Scholar Corbeil , C.R. , Williams , C.I. , and Labute , P. ( 2012 ). Variability in docking success rates due to dataset preparation . J. Comput. Aided Mol. Des. 26 : 775 – 786 . 10.1007/s10822-012-9570-1 CASPubMedWeb of Science®Google Scholar Nowak , R.P. et al. ( 2018 ). Plasticity in binding confers selectivity in ligand-induced protein degradation . Nat. Chem. Biol. 14 : 706 – 714 . 10.1038/s41589-018-0055-y CASPubMedWeb of Science®Google Scholar Huang , S.-Y. ( 2014 ). Search strategies and evaluation in protein–protein docking: principles, advances and challenges . Drug Discov. Today 19 : 1081 – 1096 . 10.1016/j.drudis.2014.02.005 CASPubMedWeb of Science®Google Scholar Huang , S.-Y. ( 2015 ). Exploring the potential of global protein–protein docking: an overview and critical assessment of current programs for automatic ab initio docking . Drug Discov. Today 20 : 969 – 977 . 10.1016/j.drudis.2015.03.007 CASPubMedWeb of Science®Google Scholar Pierce , B.G. , Hourai , Y. , and Weng , Z. ( 2011 ). Accelerating protein docking in ZDOCK using an advanced 3D convolution library . PLoS One 6 : e24657 . 10.1371/journal.pone.0024657 Web of Science®Google Scholar Bron , C. and Kerbosch , J. ( 1973 ). Algorithm 457: finding all cliques of an undirected graph . Commun. ACM 16 : 575 – 577 . 10.1145/362342.362367 Web of Science®Google Scholar Labute , P. ( 2010 ). LowModeMD—implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops . J. Chem. Inf. Model. 50 : 792 – 800 . 10.1021/ci900508k CASPubMedWeb of Science®Google Scholar Eron , S.J. et al. ( 2021 ). Structural characterization of degrader-induced ternary complexes using hydrogen–deuterium exchange mass spectrometry and computational modeling: implications for structure-based design . ACS Chem. Biol. 16 : 2228 – 2243 . 10.1021/acschembio.1c00376 CASPubMedWeb of Science®Google Scholar Zorba , A. et al. ( 2018 ). Delineating the role of cooperativity in the design of potent PROTACs for BTK . Proc. Natl. Acad. Sci. U S A 115 . 10.1073/pnas.1803662115 PubMedWeb of Science®Google Scholar Smith , B.E. et al. ( 2019 ). Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase . Nat. Commun. 10 : 131 . 10.1038/s41467-018-08027-7 PubMedWeb of Science®Google Scholar Hansen , J.D. et al. ( 2021 ). CC-90009: a cereblon E3 ligase modulating drug that promotes selective degradation of GSPT1 for the treatment of acute myeloid leukemia . J. Med. Chem. 64 : 1835 – 1843 . 10.1021/acs.jmedchem.0c01489 CASPubMedWeb of Science®Google Scholar Computational Drug Discovery: Methods and Applications ReferencesRelatedInformation