Cognitive and clinical predictors of a long-term course in obsessive compulsive disorder: A machine learning approach in a prospective cohort study

背景(考古学) 精神外科 神经心理学 精神科 心理学 认知 医学 临床心理学 生物 古生物学
作者
Cinto Segalàs,E. Cernadas,M. Puialto,Manuel Fernández-Delgado,Manuel Arrojo,Sara Bertolín,Eva Real,José M. Menchón,Ángel Carracedo,María Tubío-Fungueiriño,Pino Alonso,Montse Fernández‐Prieto
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:350: 648-655 被引量:1
标识
DOI:10.1016/j.jad.2024.01.157
摘要

Obsessive compulsive disorder (OCD) is a disabling illness with a chronic course, yet data on long-term outcomes are scarce. This study aimed to examine the long-term course of OCD in patients treated with different approaches (drugs, psychotherapy, and psychosurgery) and to identify predictors of clinical outcome by machine learning. We included outpatients with OCD treated at our referral unit. Demographic and neuropsychological data were collected at baseline using standardized instruments. Clinical data were collected at baseline, 12 weeks after starting pharmacological treatment prescribed at study inclusion, and after follow-up. Of the 60 outpatients included, with follow-up data available for 5–17 years (mean = 10.6 years), 40 (67.7 %) were considered non-responders to adequate treatment at the end of the study. The best machine learning model achieved a correlation of 0.63 for predicting the long-term Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score by adding clinical response (to the first pharmacological treatment) to the baseline clinical and neuropsychological characteristics. Limitations. Our main limitations were the sample size, modest in the context of traditional ML studies, and the sample composition, more representative of rather severe OCD cases than of patients from the general community. Many patients with OCD showed persistent and disabling symptoms at the end of follow-up despite comprehensive treatment that could include medication, psychotherapy, and psychosurgery. Machine learning algorithms can predict the long-term course of OCD using clinical and cognitive information to optimize treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TXQ发布了新的文献求助10
刚刚
英俊的铭应助zhuzhu采纳,获得10
1秒前
Xx完成签到,获得积分10
1秒前
Epiphany完成签到,获得积分10
1秒前
欣慰的绿蝶关注了科研通微信公众号
2秒前
波波发布了新的文献求助10
2秒前
hbhbj发布了新的文献求助10
3秒前
CipherSage应助缥缈的夜梅采纳,获得10
3秒前
3秒前
4秒前
6秒前
脑洞疼应助13采纳,获得20
6秒前
完美世界应助skyler采纳,获得10
6秒前
无花果应助小白采纳,获得10
8秒前
9秒前
orixero应助银玥采纳,获得10
10秒前
10秒前
ll完成签到,获得积分10
10秒前
高数数完成签到 ,获得积分10
10秒前
awuwuwu发布了新的文献求助10
11秒前
科研通AI6应助美好向日葵采纳,获得10
12秒前
机智平灵发布了新的文献求助10
12秒前
华山发布了新的文献求助30
12秒前
炙热的以南完成签到,获得积分10
13秒前
hbhbj发布了新的文献求助10
13秒前
帅气小霜发布了新的文献求助10
14秒前
mikejames完成签到,获得积分10
15秒前
桃桃发布了新的文献求助10
15秒前
洋芋小姐完成签到 ,获得积分20
15秒前
16秒前
17秒前
迷路文博完成签到 ,获得积分20
17秒前
慕青应助Lybb采纳,获得30
17秒前
18秒前
水1111完成签到,获得积分20
18秒前
18秒前
19秒前
19秒前
充电宝应助我就是KKKK采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058