Cognitive and clinical predictors of a long-term course in obsessive compulsive disorder: A machine learning approach in a prospective cohort study

背景(考古学) 精神外科 神经心理学 精神科 心理学 认知 医学 临床心理学 生物 古生物学
作者
Cinto Segalàs,E. Cernadas,M. Puialto,Manuel Fernández-Delgado,Manuel Arrojo,Sara Bertolín,Eva Real,José M. Menchón,Ángel Carracedo,María Tubío-Fungueiriño,Pino Alonso,Montse Fernández‐Prieto
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:350: 648-655 被引量:1
标识
DOI:10.1016/j.jad.2024.01.157
摘要

Obsessive compulsive disorder (OCD) is a disabling illness with a chronic course, yet data on long-term outcomes are scarce. This study aimed to examine the long-term course of OCD in patients treated with different approaches (drugs, psychotherapy, and psychosurgery) and to identify predictors of clinical outcome by machine learning. We included outpatients with OCD treated at our referral unit. Demographic and neuropsychological data were collected at baseline using standardized instruments. Clinical data were collected at baseline, 12 weeks after starting pharmacological treatment prescribed at study inclusion, and after follow-up. Of the 60 outpatients included, with follow-up data available for 5–17 years (mean = 10.6 years), 40 (67.7 %) were considered non-responders to adequate treatment at the end of the study. The best machine learning model achieved a correlation of 0.63 for predicting the long-term Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score by adding clinical response (to the first pharmacological treatment) to the baseline clinical and neuropsychological characteristics. Limitations. Our main limitations were the sample size, modest in the context of traditional ML studies, and the sample composition, more representative of rather severe OCD cases than of patients from the general community. Many patients with OCD showed persistent and disabling symptoms at the end of follow-up despite comprehensive treatment that could include medication, psychotherapy, and psychosurgery. Machine learning algorithms can predict the long-term course of OCD using clinical and cognitive information to optimize treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qxxxxx完成签到,获得积分10
刚刚
aprilvanilla完成签到,获得积分10
刚刚
月亮邮递员完成签到,获得积分10
刚刚
huoguo完成签到,获得积分10
刚刚
英俊的铭应助淡定采纳,获得10
2秒前
木又权完成签到,获得积分10
3秒前
HAOHAO发布了新的文献求助10
3秒前
脑洞疼应助牟潦草采纳,获得10
3秒前
西西完成签到,获得积分10
5秒前
foceman发布了新的文献求助10
5秒前
linxi完成签到,获得积分10
5秒前
淡然鸡翅完成签到,获得积分10
6秒前
溜达鸡完成签到 ,获得积分10
7秒前
7秒前
贵医实验王粥张完成签到,获得积分10
7秒前
7秒前
8秒前
英俊的念寒完成签到,获得积分10
8秒前
秀丽的初柔完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
czx完成签到,获得积分10
9秒前
小红完成签到,获得积分10
9秒前
foceman完成签到,获得积分10
10秒前
he完成签到,获得积分10
10秒前
朴实海亦完成签到,获得积分10
10秒前
dsv完成签到,获得积分10
10秒前
Inter09完成签到,获得积分10
10秒前
cxl完成签到,获得积分10
11秒前
失眠呆呆鱼完成签到 ,获得积分10
11秒前
ff发布了新的文献求助10
11秒前
小柒柒完成签到,获得积分10
12秒前
liujianxin发布了新的文献求助10
12秒前
逢考必过完成签到,获得积分10
12秒前
西哥完成签到,获得积分10
12秒前
hhh2018687完成签到,获得积分10
12秒前
AR完成签到,获得积分10
13秒前
清澜庭完成签到,获得积分10
13秒前
shunlimaomi完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4927230
求助须知:如何正确求助?哪些是违规求助? 4196614
关于积分的说明 13033700
捐赠科研通 3969366
什么是DOI,文献DOI怎么找? 2175324
邀请新用户注册赠送积分活动 1192409
关于科研通互助平台的介绍 1103081