Cognitive and clinical predictors of a long-term course in obsessive compulsive disorder: A machine learning approach in a prospective cohort study

背景(考古学) 精神外科 神经心理学 精神科 心理学 认知 医学 临床心理学 生物 古生物学
作者
Cinto Segalàs,Eva Cernadas,M. Puialto,Manuel Fernández-Delgado,Manuel Arrojo,Sara Bertolín,Eva Real,José M. Menchón,Ángel Carracedo,María Tubío-Fungueiriño,Pino Alonso,Montse Fernández‐Prieto
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:350: 648-655 被引量:6
标识
DOI:10.1016/j.jad.2024.01.157
摘要

Obsessive compulsive disorder (OCD) is a disabling illness with a chronic course, yet data on long-term outcomes are scarce. This study aimed to examine the long-term course of OCD in patients treated with different approaches (drugs, psychotherapy, and psychosurgery) and to identify predictors of clinical outcome by machine learning. We included outpatients with OCD treated at our referral unit. Demographic and neuropsychological data were collected at baseline using standardized instruments. Clinical data were collected at baseline, 12 weeks after starting pharmacological treatment prescribed at study inclusion, and after follow-up. Of the 60 outpatients included, with follow-up data available for 5–17 years (mean = 10.6 years), 40 (67.7 %) were considered non-responders to adequate treatment at the end of the study. The best machine learning model achieved a correlation of 0.63 for predicting the long-term Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score by adding clinical response (to the first pharmacological treatment) to the baseline clinical and neuropsychological characteristics. Limitations. Our main limitations were the sample size, modest in the context of traditional ML studies, and the sample composition, more representative of rather severe OCD cases than of patients from the general community. Many patients with OCD showed persistent and disabling symptoms at the end of follow-up despite comprehensive treatment that could include medication, psychotherapy, and psychosurgery. Machine learning algorithms can predict the long-term course of OCD using clinical and cognitive information to optimize treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
可积完成签到,获得积分10
2秒前
ShengjuChen完成签到 ,获得积分10
2秒前
tony发布了新的文献求助10
3秒前
健康的人生完成签到,获得积分10
3秒前
严yee发布了新的文献求助10
3秒前
4秒前
飞飞飞发布了新的文献求助10
4秒前
4秒前
刘科研完成签到,获得积分10
4秒前
kosmos完成签到,获得积分10
5秒前
5秒前
Khaos_0929完成签到,获得积分10
6秒前
7秒前
zhangmeimei完成签到,获得积分10
7秒前
化学镁铝完成签到,获得积分10
8秒前
9秒前
yyyyyy完成签到 ,获得积分10
10秒前
Satan发布了新的文献求助10
10秒前
11秒前
科研通AI6.1应助tony采纳,获得10
11秒前
怜梦完成签到,获得积分10
11秒前
cookie完成签到,获得积分10
12秒前
conveyor6发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
爆米花应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得30
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得30
14秒前
Rollei应助科研通管家采纳,获得10
14秒前
Rollei应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
李健应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734559
求助须知:如何正确求助?哪些是违规求助? 5354867
关于积分的说明 15327244
捐赠科研通 4879200
什么是DOI,文献DOI怎么找? 2621736
邀请新用户注册赠送积分活动 1570891
关于科研通互助平台的介绍 1527707