Cognitive and clinical predictors of a long-term course in obsessive compulsive disorder: A machine learning approach in a prospective cohort study

背景(考古学) 精神外科 神经心理学 精神科 心理学 认知 医学 临床心理学 古生物学 生物
作者
Cinto Segalàs,E. Cernadas,M. Puialto,Manuel Fernández-Delgado,Manuel Arrojo,Sara Bertolín,Eva Real,José M. Menchón,Ángel Carracedo,María Tubío-Fungueiriño,Pino Alonso,Montse Fernández‐Prieto
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:350: 648-655 被引量:1
标识
DOI:10.1016/j.jad.2024.01.157
摘要

Obsessive compulsive disorder (OCD) is a disabling illness with a chronic course, yet data on long-term outcomes are scarce. This study aimed to examine the long-term course of OCD in patients treated with different approaches (drugs, psychotherapy, and psychosurgery) and to identify predictors of clinical outcome by machine learning. We included outpatients with OCD treated at our referral unit. Demographic and neuropsychological data were collected at baseline using standardized instruments. Clinical data were collected at baseline, 12 weeks after starting pharmacological treatment prescribed at study inclusion, and after follow-up. Of the 60 outpatients included, with follow-up data available for 5–17 years (mean = 10.6 years), 40 (67.7 %) were considered non-responders to adequate treatment at the end of the study. The best machine learning model achieved a correlation of 0.63 for predicting the long-term Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score by adding clinical response (to the first pharmacological treatment) to the baseline clinical and neuropsychological characteristics. Limitations. Our main limitations were the sample size, modest in the context of traditional ML studies, and the sample composition, more representative of rather severe OCD cases than of patients from the general community. Many patients with OCD showed persistent and disabling symptoms at the end of follow-up despite comprehensive treatment that could include medication, psychotherapy, and psychosurgery. Machine learning algorithms can predict the long-term course of OCD using clinical and cognitive information to optimize treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮敏完成签到,获得积分20
刚刚
1秒前
1秒前
dizi_88发布了新的文献求助10
1秒前
我的miemie发布了新的文献求助10
1秒前
烟花应助lalala采纳,获得10
1秒前
宇文青寒完成签到,获得积分10
2秒前
Ge发布了新的文献求助10
2秒前
皮皮敏发布了新的文献求助10
3秒前
火星上小土豆完成签到 ,获得积分10
4秒前
曾经问玉完成签到,获得积分10
4秒前
甜蜜的灵凡完成签到,获得积分10
4秒前
李爱国应助青果采纳,获得10
5秒前
姚子敏完成签到,获得积分10
5秒前
舒心小海豚完成签到 ,获得积分10
6秒前
6秒前
6秒前
zsl发布了新的文献求助10
7秒前
华仔应助张花花采纳,获得10
8秒前
清秀LL完成签到 ,获得积分10
8秒前
Yxy完成签到,获得积分10
9秒前
10秒前
科研通AI2S应助曾经问玉采纳,获得10
11秒前
七个小矮人完成签到 ,获得积分10
13秒前
13秒前
g7001完成签到,获得积分10
15秒前
Ge完成签到,获得积分10
15秒前
rr发布了新的文献求助10
16秒前
轻松旭尧完成签到,获得积分20
16秒前
Link应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
几酌应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得20
18秒前
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816187
关于积分的说明 7911845
捐赠科研通 2475930
什么是DOI,文献DOI怎么找? 1318423
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388