All-optical complex field imaging using diffractive processors

领域(数学) 计算机科学 光学成像 物理 光学 数学 纯数学
作者
Jingxi Li,Yuhang Li,Tianyi Gan,Che‐Yung Shen,Mona Jarrahi,Aydogan Özcan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.16779
摘要

Complex field imaging, which captures both the amplitude and phase information of input optical fields or objects, can offer rich structural insights into samples, such as their absorption and refractive index distributions. However, conventional image sensors are intensity-based and inherently lack the capability to directly measure the phase distribution of a field. This limitation can be overcome using interferometric or holographic methods, often supplemented by iterative phase retrieval algorithms, leading to a considerable increase in hardware complexity and computational demand. Here, we present a complex field imager design that enables snapshot imaging of both the amplitude and quantitative phase information of input fields using an intensity-based sensor array without any digital processing. Our design utilizes successive deep learning-optimized diffractive surfaces that are structured to collectively modulate the input complex field, forming two independent imaging channels that perform amplitude-to-amplitude and phase-to-intensity transformations between the input and output planes within a compact optical design, axially spanning ~100 wavelengths. The intensity distributions of the output fields at these two channels on the sensor plane directly correspond to the amplitude and quantitative phase profiles of the input complex field, eliminating the need for any digital image reconstruction algorithms. We experimentally validated the efficacy of our complex field diffractive imager designs through 3D-printed prototypes operating at the terahertz spectrum, with the output amplitude and phase channel images closely aligning with our numerical simulations. We envision that this complex field imager will have various applications in security, biomedical imaging, sensing and material science, among others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汪汪发布了新的文献求助10
1秒前
结实星星完成签到,获得积分0
3秒前
3秒前
司空豁完成签到,获得积分10
3秒前
无花果应助绺妙采纳,获得10
4秒前
SciGPT应助鸭鸭采纳,获得10
5秒前
5秒前
羊羊完成签到 ,获得积分10
5秒前
6秒前
万能图书馆应助汪汪采纳,获得10
7秒前
万能图书馆应助咕嘟咕嘟采纳,获得10
7秒前
小马甲应助ShiyaoWang采纳,获得10
8秒前
Jasper应助yanna采纳,获得20
8秒前
9秒前
吉以寒完成签到,获得积分10
10秒前
zhongu应助Yoki采纳,获得10
13秒前
xf完成签到,获得积分10
14秒前
15秒前
wind完成签到,获得积分10
15秒前
15秒前
17秒前
思源应助沙不凡采纳,获得10
17秒前
77777完成签到,获得积分20
18秒前
糖大唐完成签到,获得积分10
19秒前
kawing完成签到,获得积分10
21秒前
冷傲的太英完成签到,获得积分10
22秒前
水凝胶发布了新的文献求助10
22秒前
玩命的一笑完成签到,获得积分20
22秒前
22秒前
24秒前
乐乐应助葛根采纳,获得10
26秒前
26秒前
科研通AI5应助Yoki采纳,获得10
26秒前
桐桐应助水果采纳,获得10
27秒前
Khr1stINK发布了新的文献求助20
27秒前
27秒前
Y20发布了新的文献求助10
27秒前
liuwei完成签到,获得积分10
28秒前
ding应助joe_liu采纳,获得10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737690
求助须知:如何正确求助?哪些是违规求助? 3281323
关于积分的说明 10024607
捐赠科研通 2998066
什么是DOI,文献DOI怎么找? 1645021
邀请新用户注册赠送积分活动 782472
科研通“疑难数据库(出版商)”最低求助积分说明 749814