Magnetic-Actuated Jumping of Droplets on Superhydrophobic Grooved Surfaces: A Versatile Strategy for Three-Dimensional Droplet Transportation

纳米技术 微流控 材料科学 流体学 曲面(拓扑) 机械 物理 航空航天工程 工程类 几何学 数学
作者
Yu‐Sheng Huang,Guifeng Wen,Yue Fan,Maomao He,Wen Sun,Xuelin Tian,Shilin Huang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (8): 6359-6372 被引量:17
标识
DOI:10.1021/acsnano.3c11197
摘要

On-demand droplet transportation is of great significance for numerous applications. Although various strategies have been developed for droplet transportation, out-of-surface three-dimensional (3D) transportation of droplets remains challenging. Here, a versatile droplet transportation strategy based on magnetic-actuated jumping (MAJ) of droplets on superhydrophobic grooved surfaces (SHGSs) is presented, which enables 3D, remote, and precise manipulation of droplets even in enclosed narrow spaces. To trigger MAJ, an electromagnetic field is utilized to deform the droplet on the SHGS with the aid of an attached magnetic particle, thereby the droplet acquires excess surface energy. When the electromagnetic field is quickly removed, the excess surface energy is partly converted into kinetic energy, allowing the droplet to jump atop the surface. Through high-speed imaging and numerical simulation, the working mechanism and size matching effect of MAJ are unveiled. It is found that the MAJ behavior can only be observed if the sizes of the droplets and the superhydrophobic grooves are matched, otherwise unwanted entrapment or pinch-off effects would lead to failure of MAJ. A regime diagram which serves as a guideline to design SHGSs for MAJ is proposed. The droplet transportation capacities of MAJ, including in-surface and out-of-surface directional transportation, climbing stairs, and crossing obstacles, are also demonstrated. With the ability to remotely manipulate droplets in enclosed narrow spaces without using any mechanical moving parts, MAJ can be used to design miniaturized fluidic platforms, which exhibit great potential for applications in bioassays, microfluidics, droplet-based switches, and microreactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮卡丘比特应助lalala采纳,获得20
刚刚
爱听歌从蓉关注了科研通微信公众号
1秒前
香蕉觅云应助zh采纳,获得10
1秒前
2秒前
金金金完成签到,获得积分10
3秒前
4秒前
LONG发布了新的文献求助10
6秒前
红烧肉耶发布了新的文献求助10
7秒前
kirazou完成签到,获得积分10
7秒前
lwj完成签到,获得积分10
8秒前
13秒前
共享精神应助自觉的小凝采纳,获得10
17秒前
JamesPei应助琪求好运采纳,获得10
17秒前
18秒前
18秒前
18秒前
guard发布了新的文献求助10
18秒前
Sweety-完成签到 ,获得积分10
19秒前
19秒前
达拉崩吧完成签到,获得积分10
20秒前
童万明完成签到,获得积分20
21秒前
没烦恼完成签到,获得积分10
22秒前
zz完成签到 ,获得积分10
22秒前
Owen应助TingtingGZ采纳,获得10
22秒前
pomfret完成签到 ,获得积分10
24秒前
没烦恼发布了新的文献求助10
26秒前
童万明发布了新的文献求助10
26秒前
阳阳完成签到,获得积分10
27秒前
32秒前
四月是你的谎言完成签到 ,获得积分10
36秒前
王昭完成签到 ,获得积分10
37秒前
112233发布了新的文献求助20
37秒前
38秒前
38秒前
富华路完成签到,获得积分10
39秒前
39秒前
39秒前
壮观青亦完成签到 ,获得积分10
40秒前
祁问儿完成签到 ,获得积分10
41秒前
Ccccn完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511