A systematic review of deep learning approaches for surface defect detection in industrial applications

计算机科学 深度学习 人工智能 卷积神经网络 机器学习 棱锥(几何) 特征提取 过程(计算) 领域(数学) 模式识别(心理学) 数学 操作系统 光学 物理 纯数学
作者
Rasoul Ameri,Chung-Chian Hsu,Shahab S. Band
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:130: 107717-107717 被引量:89
标识
DOI:10.1016/j.engappai.2023.107717
摘要

Detecting surface defects plays a crucial role in ensuring the quality, functionality, and security of the production process. Traditional image processing techniques and machine learning models rely on manual analysis and feature extraction for specific vision inspection tasks. Deep learning approaches, which can automatically extract features from images, have demonstrated outstanding performance in computer vision tasks, including detecting surface defects. Motivated by this consideration, a Systematic Literature Review (SLR) method is employed for the comprehensive analysis of studies published between 2020 and 2023 in the field of deep learning-based surface defect detection applications in industrial products. The study provides a technical taxonomy for deep learning models according to the content of current studies through the SLR process, including Convolutional Neural Networks (CNN), encoder–decoder models, pyramid network models, Generative Adversarial Networks (GAN), attention-based models, and other models for surface defect detection. Then, the commonly used datasets for surface defect detection are discussed, and a comparative analysis of deep learning models' performance is provided. Our comparative analysis reveals that pyramid network models and CNN models are the most frequently used deep learning models for surface defect detection. These models yield reasonable results in surface defect detection due to their exceptional feature extraction capabilities. Finally, some hints for addressing future research directions and identifying open issues in surface defect detection applications are presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿士大夫发布了新的文献求助10
刚刚
sciiii发布了新的文献求助30
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
少年应助金克斯采纳,获得10
2秒前
kdfdds发布了新的文献求助10
3秒前
小糊涂发布了新的文献求助10
3秒前
3秒前
3秒前
李凯完成签到,获得积分20
3秒前
惜涵发布了新的文献求助10
4秒前
1237发布了新的文献求助30
4秒前
浮游应助阿十采纳,获得10
4秒前
平生欢发布了新的文献求助10
4秒前
天真小蚂蚁完成签到,获得积分10
5秒前
坚定芷烟完成签到,获得积分10
5秒前
6秒前
liuhuayaxi发布了新的文献求助20
6秒前
caigou发布了新的文献求助10
6秒前
执着的飞荷完成签到,获得积分10
7秒前
活力的青旋完成签到 ,获得积分10
7秒前
7秒前
wangly发布了新的文献求助10
8秒前
亚鹏发布了新的文献求助10
8秒前
9秒前
KQ发布了新的文献求助10
9秒前
dropofwater完成签到,获得积分10
9秒前
FRANKFANG发布了新的文献求助30
9秒前
guulee完成签到,获得积分10
9秒前
小蓝莓完成签到,获得积分10
9秒前
bkagyin应助小卡拉米采纳,获得10
9秒前
10秒前
10秒前
wang完成签到,获得积分10
10秒前
10秒前
11秒前
科研通AI2S应助liu采纳,获得20
11秒前
11秒前
晓风残月完成签到,获得积分10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233