A systematic review of deep learning approaches for surface defect detection in industrial applications

计算机科学 深度学习 人工智能 卷积神经网络 机器学习 棱锥(几何) 特征提取 过程(计算) 领域(数学) 模式识别(心理学) 数学 操作系统 光学 物理 纯数学
作者
Rasoul Ameri,Chung-Chian Hsu,Shahab S. Band
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:130: 107717-107717 被引量:21
标识
DOI:10.1016/j.engappai.2023.107717
摘要

Detecting surface defects plays a crucial role in ensuring the quality, functionality, and security of the production process. Traditional image processing techniques and machine learning models rely on manual analysis and feature extraction for specific vision inspection tasks. Deep learning approaches, which can automatically extract features from images, have demonstrated outstanding performance in computer vision tasks, including detecting surface defects. Motivated by this consideration, a Systematic Literature Review (SLR) method is employed for the comprehensive analysis of studies published between 2020 and 2023 in the field of deep learning-based surface defect detection applications in industrial products. The study provides a technical taxonomy for deep learning models according to the content of current studies through the SLR process, including Convolutional Neural Networks (CNN), encoder–decoder models, pyramid network models, Generative Adversarial Networks (GAN), attention-based models, and other models for surface defect detection. Then, the commonly used datasets for surface defect detection are discussed, and a comparative analysis of deep learning models' performance is provided. Our comparative analysis reveals that pyramid network models and CNN models are the most frequently used deep learning models for surface defect detection. These models yield reasonable results in surface defect detection due to their exceptional feature extraction capabilities. Finally, some hints for addressing future research directions and identifying open issues in surface defect detection applications are presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCI完成签到 ,获得积分10
刚刚
1秒前
healer发布了新的文献求助10
1秒前
123完成签到,获得积分20
2秒前
李健的小迷弟应助yili采纳,获得10
2秒前
L.完成签到,获得积分10
2秒前
木子发布了新的文献求助10
2秒前
威武诺言发布了新的文献求助10
2秒前
科研通AI5应助孙二二采纳,获得10
2秒前
2秒前
英姑应助rookie_b0采纳,获得10
3秒前
毛慢慢发布了新的文献求助10
3秒前
123完成签到,获得积分10
3秒前
kangkang完成签到,获得积分10
4秒前
丘比特应助东风第一枝采纳,获得10
4秒前
4秒前
丰知然应助normankasimodo采纳,获得10
5秒前
黑森林发布了新的文献求助30
5秒前
hu970发布了新的文献求助10
5秒前
5秒前
俭朴夜雪发布了新的文献求助30
5秒前
林上草应助lzj001983采纳,获得10
5秒前
小白完成签到,获得积分20
5秒前
药疯了完成签到,获得积分20
6秒前
桐桐应助123采纳,获得10
6秒前
风中寄云发布了新的文献求助10
6秒前
buuyoo发布了新的文献求助10
6秒前
zjudxn发布了新的文献求助10
6秒前
春夏爱科研完成签到,获得积分10
7秒前
飞翔的西红柿完成签到,获得积分10
7秒前
xzy完成签到,获得积分10
7秒前
L.发布了新的文献求助20
8秒前
Verdigris完成签到,获得积分10
9秒前
cindy完成签到,获得积分10
9秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
9秒前
金色热浪完成签到 ,获得积分10
9秒前
快去读文献完成签到,获得积分20
9秒前
斯文静曼完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759