亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A systematic review of deep learning approaches for surface defect detection in industrial applications

计算机科学 深度学习 人工智能 卷积神经网络 机器学习 棱锥(几何) 特征提取 过程(计算) 领域(数学) 模式识别(心理学) 物理 数学 纯数学 光学 操作系统
作者
Rasoul Ameri,Chung-Chian Hsu,Shahab S. Band
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:130: 107717-107717 被引量:84
标识
DOI:10.1016/j.engappai.2023.107717
摘要

Detecting surface defects plays a crucial role in ensuring the quality, functionality, and security of the production process. Traditional image processing techniques and machine learning models rely on manual analysis and feature extraction for specific vision inspection tasks. Deep learning approaches, which can automatically extract features from images, have demonstrated outstanding performance in computer vision tasks, including detecting surface defects. Motivated by this consideration, a Systematic Literature Review (SLR) method is employed for the comprehensive analysis of studies published between 2020 and 2023 in the field of deep learning-based surface defect detection applications in industrial products. The study provides a technical taxonomy for deep learning models according to the content of current studies through the SLR process, including Convolutional Neural Networks (CNN), encoder–decoder models, pyramid network models, Generative Adversarial Networks (GAN), attention-based models, and other models for surface defect detection. Then, the commonly used datasets for surface defect detection are discussed, and a comparative analysis of deep learning models' performance is provided. Our comparative analysis reveals that pyramid network models and CNN models are the most frequently used deep learning models for surface defect detection. These models yield reasonable results in surface defect detection due to their exceptional feature extraction capabilities. Finally, some hints for addressing future research directions and identifying open issues in surface defect detection applications are presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
白华苍松发布了新的文献求助10
9秒前
12秒前
16秒前
懒回顾发布了新的文献求助10
17秒前
22秒前
懒回顾完成签到,获得积分10
26秒前
34秒前
忧郁丹彤完成签到,获得积分10
38秒前
ZYP完成签到,获得积分10
44秒前
45秒前
53秒前
忧郁丹彤发布了新的文献求助10
57秒前
1分钟前
1分钟前
金沐栋完成签到,获得积分10
1分钟前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
1分钟前
1分钟前
无极微光应助明理丹烟采纳,获得40
1分钟前
1分钟前
2分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
gwbk完成签到,获得积分10
3分钟前
3分钟前
tcklikai发布了新的文献求助20
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
呆萌冰彤完成签到 ,获得积分10
3分钟前
3分钟前
小莹完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509683
求助须知:如何正确求助?哪些是违规求助? 4604498
关于积分的说明 14489819
捐赠科研通 4539307
什么是DOI,文献DOI怎么找? 2487456
邀请新用户注册赠送积分活动 1469860
关于科研通互助平台的介绍 1442088