A new methodology for the prediction of optimal conditions for dyes' electrochemical removal; Application of copula function, machine learning, deep learning, and multi-objective optimization

人工神经网络 计算机科学 多目标优化 支持向量机 数学优化 人工智能 机器学习 数学
作者
Farideh Nabizadeh Chianeh,Mahdi Valikhan Anaraki,Fatemeh Mahmoudian,Saeed Farzin
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:182: 298-313 被引量:7
标识
DOI:10.1016/j.psep.2023.11.073
摘要

In the present study, a new methodology has been introduced for predicting the simultaneous removal optimal conditions of Acid red 33 (AR33), Reactive orange 7 (RO7), Acid yellow 3 (AY3), and Malachite green (MG) dyes. Since industrial wastewater contains a variety of dyes, simultaneous prediction of their removal efficiency is a practical issue. The goal of this research was to address challenges associated with modeling this type of removal process. In the first part of this methodology, the c-vine copula function was used to generate synthetic data since the use of most modeling methods requires a large number of data, and studying different experimental conditions is time- and cost-consuming. Besides, Artificial neural network, Adaptive neuro-fuzzy inference system, Least-square support vector machine, and Long-short term memory algorithms were applied for modeling the dyes' removal efficiency using experimental and synthetic data. Utilizing synthetic data significantly improved the accuracy of modeling. For the purpose of finding the optimal amount of dyes' removal efficiency simultaneously, the removal efficiency of each dye is defined as an objective function. This leads to a problem requiring multi-objective optimization. Hence, the Multi-Objective Adaptive Guided Differential Evolution was employed for multi-objective optimization of dyes' removal efficiency. The optimization process was carried out based on the four objective functions including AR33, RO7, AY3, and MG dyes' removal efficiency. The results indicated a direct relationship between dyes' removal efficiency on the Pareto front as well as a highly oscillating and nonlinear relationship with decision variables (pH, NaCl concentration, current, and Time) under optimal conditions. Finally, the average results of Technique for Order of Preference by Similarity to Ideal Solution and VIekriterijumsko KOmpromisno Rangiranje were utilized to select the best optimal conditions from the Pareto front. With pH, NaCl, Time, and current inputs at 6.60, 0.67 (g/L), 96.93 (min), 0.01 (A) (optimal conditions), the best removal efficiencies of 98.88, 37.02, 91.19, and 98.33 (%) were obtained for AR33, RO7, AY3, and MG dyes, respectively. The introduced method demonstrated excellent promise for predicting optimal conditions for dyes' removal efficiency as well as for making wastewater treatment systems easier to design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼的明雪完成签到,获得积分10
1秒前
1秒前
嘉禾望岗发布了新的文献求助10
1秒前
大橙子完成签到,获得积分10
1秒前
东北信风完成签到 ,获得积分10
1秒前
今后应助祝顺遂采纳,获得10
1秒前
NADA完成签到,获得积分10
2秒前
长安完成签到,获得积分10
2秒前
AA完成签到,获得积分10
2秒前
NANA发布了新的文献求助10
2秒前
4秒前
4秒前
5秒前
7秒前
7秒前
8秒前
科研通AI5应助无悔呀采纳,获得10
8秒前
8秒前
littlewhite关注了科研通微信公众号
9秒前
9秒前
零点起步完成签到,获得积分10
9秒前
慕青应助大力的含卉采纳,获得10
9秒前
善良过客发布了新的文献求助10
10秒前
10秒前
10秒前
dildil发布了新的文献求助10
10秒前
10秒前
hu970发布了新的文献求助10
11秒前
11秒前
王思鲁发布了新的文献求助30
11秒前
七个小矮人完成签到,获得积分10
12秒前
Aria完成签到,获得积分10
12秒前
感性的安露应助结实雪卉采纳,获得20
13秒前
零点起步发布了新的文献求助10
14秒前
故意的傲玉应助Ll采纳,获得10
14秒前
斯文败类应助xiuxiu_27采纳,获得10
14秒前
胖子完成签到,获得积分10
14秒前
王巧巧完成签到,获得积分10
14秒前
tangsuyun发布了新的文献求助10
15秒前
祝顺遂发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759