A new methodology for the prediction of optimal conditions for dyes' electrochemical removal; Application of copula function, machine learning, deep learning, and multi-objective optimization

人工神经网络 计算机科学 多目标优化 支持向量机 数学优化 人工智能 机器学习 数学
作者
Farideh Nabizadeh Chianeh,Mahdi Valikhan Anaraki,Fatemeh Mahmoudian,Saeed Farzin
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:182: 298-313 被引量:7
标识
DOI:10.1016/j.psep.2023.11.073
摘要

In the present study, a new methodology has been introduced for predicting the simultaneous removal optimal conditions of Acid red 33 (AR33), Reactive orange 7 (RO7), Acid yellow 3 (AY3), and Malachite green (MG) dyes. Since industrial wastewater contains a variety of dyes, simultaneous prediction of their removal efficiency is a practical issue. The goal of this research was to address challenges associated with modeling this type of removal process. In the first part of this methodology, the c-vine copula function was used to generate synthetic data since the use of most modeling methods requires a large number of data, and studying different experimental conditions is time- and cost-consuming. Besides, Artificial neural network, Adaptive neuro-fuzzy inference system, Least-square support vector machine, and Long-short term memory algorithms were applied for modeling the dyes' removal efficiency using experimental and synthetic data. Utilizing synthetic data significantly improved the accuracy of modeling. For the purpose of finding the optimal amount of dyes' removal efficiency simultaneously, the removal efficiency of each dye is defined as an objective function. This leads to a problem requiring multi-objective optimization. Hence, the Multi-Objective Adaptive Guided Differential Evolution was employed for multi-objective optimization of dyes' removal efficiency. The optimization process was carried out based on the four objective functions including AR33, RO7, AY3, and MG dyes' removal efficiency. The results indicated a direct relationship between dyes' removal efficiency on the Pareto front as well as a highly oscillating and nonlinear relationship with decision variables (pH, NaCl concentration, current, and Time) under optimal conditions. Finally, the average results of Technique for Order of Preference by Similarity to Ideal Solution and VIekriterijumsko KOmpromisno Rangiranje were utilized to select the best optimal conditions from the Pareto front. With pH, NaCl, Time, and current inputs at 6.60, 0.67 (g/L), 96.93 (min), 0.01 (A) (optimal conditions), the best removal efficiencies of 98.88, 37.02, 91.19, and 98.33 (%) were obtained for AR33, RO7, AY3, and MG dyes, respectively. The introduced method demonstrated excellent promise for predicting optimal conditions for dyes' removal efficiency as well as for making wastewater treatment systems easier to design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyf完成签到 ,获得积分10
刚刚
banana完成签到,获得积分10
2秒前
快乐的若灵完成签到 ,获得积分10
2秒前
李健的小迷弟应助nicola采纳,获得10
4秒前
kai chen完成签到 ,获得积分0
5秒前
和谐断天完成签到,获得积分10
6秒前
xml关闭了xml文献求助
7秒前
跳跃的岂愈完成签到,获得积分10
8秒前
是是是WQ完成签到 ,获得积分0
8秒前
张博完成签到 ,获得积分10
9秒前
9秒前
羞月完成签到,获得积分20
10秒前
Suzzne完成签到,获得积分10
10秒前
悦耳亦云完成签到 ,获得积分10
15秒前
tian完成签到,获得积分10
15秒前
羞月发布了新的文献求助10
15秒前
16秒前
科研通AI2S应助Leung采纳,获得10
16秒前
小蘑菇应助愉快捕采纳,获得10
18秒前
CYC完成签到,获得积分10
18秒前
19秒前
19秒前
发的不太好完成签到,获得积分10
19秒前
田様应助安详的雨兰采纳,获得10
19秒前
LILI完成签到,获得积分10
20秒前
21秒前
21秒前
诸岩完成签到,获得积分10
21秒前
22秒前
Jiang湫完成签到 ,获得积分10
22秒前
H-China发布了新的文献求助10
22秒前
Cupid完成签到,获得积分10
23秒前
LILI发布了新的文献求助10
25秒前
fransiccarey完成签到,获得积分10
26秒前
LL升级记发布了新的文献求助10
27秒前
诸岩发布了新的文献求助10
27秒前
童翰完成签到,获得积分10
28秒前
28秒前
29秒前
善良的书本应助童翰采纳,获得30
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140482
求助须知:如何正确求助?哪些是违规求助? 2791338
关于积分的说明 7798605
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194