亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new methodology for the prediction of optimal conditions for dyes' electrochemical removal; Application of copula function, machine learning, deep learning, and multi-objective optimization

人工神经网络 计算机科学 多目标优化 支持向量机 数学优化 人工智能 机器学习 数学
作者
Farideh Nabizadeh Chianeh,Mahdi Valikhan Anaraki,Fatemeh Mahmoudian,Saeed Farzin
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:182: 298-313 被引量:7
标识
DOI:10.1016/j.psep.2023.11.073
摘要

In the present study, a new methodology has been introduced for predicting the simultaneous removal optimal conditions of Acid red 33 (AR33), Reactive orange 7 (RO7), Acid yellow 3 (AY3), and Malachite green (MG) dyes. Since industrial wastewater contains a variety of dyes, simultaneous prediction of their removal efficiency is a practical issue. The goal of this research was to address challenges associated with modeling this type of removal process. In the first part of this methodology, the c-vine copula function was used to generate synthetic data since the use of most modeling methods requires a large number of data, and studying different experimental conditions is time- and cost-consuming. Besides, Artificial neural network, Adaptive neuro-fuzzy inference system, Least-square support vector machine, and Long-short term memory algorithms were applied for modeling the dyes' removal efficiency using experimental and synthetic data. Utilizing synthetic data significantly improved the accuracy of modeling. For the purpose of finding the optimal amount of dyes' removal efficiency simultaneously, the removal efficiency of each dye is defined as an objective function. This leads to a problem requiring multi-objective optimization. Hence, the Multi-Objective Adaptive Guided Differential Evolution was employed for multi-objective optimization of dyes' removal efficiency. The optimization process was carried out based on the four objective functions including AR33, RO7, AY3, and MG dyes' removal efficiency. The results indicated a direct relationship between dyes' removal efficiency on the Pareto front as well as a highly oscillating and nonlinear relationship with decision variables (pH, NaCl concentration, current, and Time) under optimal conditions. Finally, the average results of Technique for Order of Preference by Similarity to Ideal Solution and VIekriterijumsko KOmpromisno Rangiranje were utilized to select the best optimal conditions from the Pareto front. With pH, NaCl, Time, and current inputs at 6.60, 0.67 (g/L), 96.93 (min), 0.01 (A) (optimal conditions), the best removal efficiencies of 98.88, 37.02, 91.19, and 98.33 (%) were obtained for AR33, RO7, AY3, and MG dyes, respectively. The introduced method demonstrated excellent promise for predicting optimal conditions for dyes' removal efficiency as well as for making wastewater treatment systems easier to design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿亮发布了新的文献求助10
1秒前
3秒前
寒冷的咖啡完成签到,获得积分10
4秒前
朴素的山蝶完成签到 ,获得积分10
5秒前
15秒前
科研通AI5应助今相离采纳,获得10
16秒前
猫毛发布了新的文献求助10
20秒前
cc应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
傲娇的曼香完成签到,获得积分10
24秒前
25秒前
量子星尘发布了新的文献求助10
31秒前
36秒前
贝儿发布了新的文献求助10
42秒前
Hello应助猫毛采纳,获得10
49秒前
52秒前
NexusExplorer应助贝儿采纳,获得10
54秒前
1分钟前
德尔塔捱斯完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
岁和景明完成签到 ,获得积分10
2分钟前
河狸上校完成签到 ,获得积分10
2分钟前
2分钟前
Joker完成签到,获得积分0
3分钟前
3分钟前
evil发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
Lucas应助W_GR采纳,获得30
4分钟前
书中魂我自不理会完成签到 ,获得积分10
4分钟前
共享精神应助evil采纳,获得10
4分钟前
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
herococa应助科研通管家采纳,获得10
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
evil完成签到,获得积分20
4分钟前
嘚嘚发布了新的文献求助10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503056
关于积分的说明 11111186
捐赠科研通 3234083
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264