已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A predictive model for frequent exacerbator phenotype of acute exacerbations of chronic obstructive pulmonary disease

医学 列线图 内科学 逻辑回归 中性粒细胞与淋巴细胞比率 接收机工作特性 回顾性队列研究 红细胞分布宽度 慢性阻塞性肺疾病急性加重期 胃肠病学 肺病 淋巴细胞
作者
Yan Zhang,Shuping Zheng,Yang-Fan Hou,Xueyan Jie,Dan Wang,Hongju Da,Hongxin Li,Jin He,Hongyan Zhao,Jiang-Hao Liu,Yu Ma,Zhihui Qiang,Wei Li,Ming Zhang,Shan Hu,Yuanyuan Wu,Hongyang Shi,Liang Zeng,Xin Sun,Yun Liu
出处
期刊:Journal of Thoracic Disease [AME Publishing Company]
卷期号:15 (12): 6502-6514 被引量:1
标识
DOI:10.21037/jtd-23-931
摘要

Background: The frequent exacerbator phenotype of acute exacerbations of chronic obstructive pulmonary disease (AECOPD) is characterized by experiencing at least two exacerbations per year, leading to a significant economic burden on healthcare systems worldwide. Although several biomarkers have been shown to be effective in assessing AECOPD severity in recent years, there is a lack of studies on markers to predict the frequent exacerbator phenotype of AECOPD. The current study aimed to develop a new predictive model for the frequent exacerbator phenotype of AECOPD based on rapid, inexpensive, and easily obtained routine markers. Methods: This was a single-center, retrospective study that enrolled a total of 2,236 AECOPD patients. The participants were divided into two groups based on the frequency of exacerbations: infrequent group (n=1,827) and frequent group (n=409). They underwent a complete blood count, as well as blood biochemistry, blood lipid and coagulation testing, and general characteristics were also recorded. Univariate analysis and binary multivariate logistic regression analyses were used to explore independent risk factors for the frequent exacerbator phenotype of AECOPD, which could be used as components of a new predictive model. The receiver operator characteristic (ROC) curve was used to assess the predictive value of the new model, which consisted of all significant risk factors predicting the primary outcome. The nomogram risk prediction model was established using R software. Results: Age, gender, length of stay (LOS), neutrophils, monocytes, eosinophils, direct bilirubin (DBil), gamma-glutamyl transferase (GGT), and the glucose-to-lymphocyte ratio (GLR) were independent risk factors for the frequent exacerbator phenotype of AECOPD. The area under the curve (AUC) of the new predictive model was 0.681 [95% confidence interval (CI): 0.653–0.708], and the sensitivity was 63.6% (95% CI: 58.9–68.2%) and the specificity was 65.0% (95% CI: 60.3–69.6%). Conclusions: A new predictive model based on demographic characteristics and blood parameters can be used to predict the frequency of acute exacerbations in the management of chronic obstructive pulmonary disease (COPD).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaofan_www发布了新的文献求助10
刚刚
小吴要努力科研完成签到 ,获得积分10
1秒前
李健的小迷弟应助cccxq采纳,获得10
2秒前
dddnnn完成签到,获得积分10
2秒前
TongKY完成签到 ,获得积分10
3秒前
4秒前
修水县1个科研人完成签到 ,获得积分10
4秒前
猫的淡淡完成签到,获得积分10
5秒前
lzz发布了新的文献求助10
6秒前
8秒前
科目三应助科研通管家采纳,获得200
8秒前
情怀应助科研通管家采纳,获得30
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
adkdad完成签到,获得积分10
13秒前
14秒前
小夜子完成签到 ,获得积分10
17秒前
傻芙芙的完成签到,获得积分10
17秒前
ding应助yy采纳,获得10
18秒前
fantasy发布了新的文献求助10
19秒前
Ava应助刘秋伶采纳,获得10
21秒前
寂寞的诗云完成签到,获得积分10
24秒前
26秒前
欢喜的文轩完成签到 ,获得积分10
29秒前
滴嘟滴嘟完成签到 ,获得积分10
30秒前
Crisp完成签到 ,获得积分10
30秒前
好运来完成签到 ,获得积分10
32秒前
我是老大应助世良采纳,获得10
34秒前
34秒前
怡然的复天完成签到,获得积分10
36秒前
华仔应助刻苦乌冬面采纳,获得10
37秒前
风中的诗双完成签到,获得积分10
37秒前
乐乐应助xuan采纳,获得10
39秒前
instill完成签到,获得积分10
40秒前
lfydhk发布了新的文献求助30
41秒前
42秒前
43秒前
obsession完成签到 ,获得积分10
43秒前
雅典的宠儿完成签到 ,获得积分10
44秒前
科研通AI6应助高高的镜子采纳,获得10
44秒前
龙骑士25完成签到 ,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650331
求助须知:如何正确求助?哪些是违规求助? 4780577
关于积分的说明 15051956
捐赠科研通 4809289
什么是DOI,文献DOI怎么找? 2572125
邀请新用户注册赠送积分活动 1528281
关于科研通互助平台的介绍 1487161