已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A predictive model for frequent exacerbator phenotype of acute exacerbations of chronic obstructive pulmonary disease

医学 列线图 内科学 逻辑回归 中性粒细胞与淋巴细胞比率 接收机工作特性 回顾性队列研究 红细胞分布宽度 慢性阻塞性肺疾病急性加重期 胃肠病学 肺病 淋巴细胞
作者
Yan Zhang,Shuping Zheng,Yang-Fan Hou,Xueyan Jie,Dan Wang,Hongju Da,Hongxin Li,Jin He,Hongyan Zhao,Jiang-Hao Liu,Yu Ma,Zhihui Qiang,Wei Li,Ming Zhang,Shan Hu,Yuanyuan Wu,Hongyang Shi,Liang Zeng,Xin Sun,Yun Liu
出处
期刊:Journal of Thoracic Disease [AME Publishing Company]
卷期号:15 (12): 6502-6514 被引量:1
标识
DOI:10.21037/jtd-23-931
摘要

Background: The frequent exacerbator phenotype of acute exacerbations of chronic obstructive pulmonary disease (AECOPD) is characterized by experiencing at least two exacerbations per year, leading to a significant economic burden on healthcare systems worldwide. Although several biomarkers have been shown to be effective in assessing AECOPD severity in recent years, there is a lack of studies on markers to predict the frequent exacerbator phenotype of AECOPD. The current study aimed to develop a new predictive model for the frequent exacerbator phenotype of AECOPD based on rapid, inexpensive, and easily obtained routine markers. Methods: This was a single-center, retrospective study that enrolled a total of 2,236 AECOPD patients. The participants were divided into two groups based on the frequency of exacerbations: infrequent group (n=1,827) and frequent group (n=409). They underwent a complete blood count, as well as blood biochemistry, blood lipid and coagulation testing, and general characteristics were also recorded. Univariate analysis and binary multivariate logistic regression analyses were used to explore independent risk factors for the frequent exacerbator phenotype of AECOPD, which could be used as components of a new predictive model. The receiver operator characteristic (ROC) curve was used to assess the predictive value of the new model, which consisted of all significant risk factors predicting the primary outcome. The nomogram risk prediction model was established using R software. Results: Age, gender, length of stay (LOS), neutrophils, monocytes, eosinophils, direct bilirubin (DBil), gamma-glutamyl transferase (GGT), and the glucose-to-lymphocyte ratio (GLR) were independent risk factors for the frequent exacerbator phenotype of AECOPD. The area under the curve (AUC) of the new predictive model was 0.681 [95% confidence interval (CI): 0.653–0.708], and the sensitivity was 63.6% (95% CI: 58.9–68.2%) and the specificity was 65.0% (95% CI: 60.3–69.6%). Conclusions: A new predictive model based on demographic characteristics and blood parameters can be used to predict the frequency of acute exacerbations in the management of chronic obstructive pulmonary disease (COPD).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
poohl发布了新的文献求助10
5秒前
陈开发布了新的文献求助10
6秒前
7秒前
尔白完成签到 ,获得积分10
7秒前
小吴要努力科研完成签到 ,获得积分10
7秒前
7秒前
7秒前
breeze完成签到,获得积分10
8秒前
陈开完成签到,获得积分10
10秒前
Lee0923完成签到,获得积分10
12秒前
12秒前
噜啦啦完成签到 ,获得积分10
12秒前
ChangShengtzu完成签到 ,获得积分10
12秒前
yaoyao发布了新的文献求助30
12秒前
卞珂完成签到,获得积分10
14秒前
傲娇泥猴桃完成签到 ,获得积分10
14秒前
卞珂发布了新的文献求助10
17秒前
江南之南完成签到 ,获得积分10
17秒前
Akim应助KK采纳,获得30
18秒前
19秒前
大力的尔安完成签到,获得积分10
20秒前
taiwenshuo完成签到,获得积分10
20秒前
21秒前
笑点低忆之完成签到 ,获得积分10
24秒前
24秒前
zhj发布了新的文献求助10
24秒前
今后应助鱼猫采纳,获得10
25秒前
Grace完成签到 ,获得积分10
25秒前
yaoyao完成签到,获得积分10
26秒前
犹豫的芝麻完成签到 ,获得积分10
26秒前
27秒前
慕青应助科研民工李采纳,获得10
28秒前
科研通AI6应助夏小胖采纳,获得10
29秒前
poison完成签到 ,获得积分10
31秒前
淡淡元蝶完成签到 ,获得积分10
31秒前
32秒前
huliang完成签到,获得积分10
34秒前
35秒前
李健应助吴迪采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497941
求助须知:如何正确求助?哪些是违规求助? 4595361
关于积分的说明 14448923
捐赠科研通 4528029
什么是DOI,文献DOI怎么找? 2481322
邀请新用户注册赠送积分活动 1465542
关于科研通互助平台的介绍 1438200