A predictive model for frequent exacerbator phenotype of acute exacerbations of chronic obstructive pulmonary disease

医学 列线图 内科学 逻辑回归 中性粒细胞与淋巴细胞比率 接收机工作特性 回顾性队列研究 红细胞分布宽度 慢性阻塞性肺疾病急性加重期 胃肠病学 肺病 淋巴细胞
作者
Yan Zhang,Shuping Zheng,Yang-Fan Hou,Xueyan Jie,Dan Wang,Hongju Da,Hongxin Li,Jin He,Hongyan Zhao,Jiang-Hao Liu,Yu Ma,Zhihui Qiang,Wei Li,Ming Zhang,Shan Hu,Yuanyuan Wu,Hongyang Shi,Liang Zeng,Xin Sun,Yun Liu
出处
期刊:Journal of Thoracic Disease [AME Publishing Company]
卷期号:15 (12): 6502-6514 被引量:1
标识
DOI:10.21037/jtd-23-931
摘要

Background: The frequent exacerbator phenotype of acute exacerbations of chronic obstructive pulmonary disease (AECOPD) is characterized by experiencing at least two exacerbations per year, leading to a significant economic burden on healthcare systems worldwide. Although several biomarkers have been shown to be effective in assessing AECOPD severity in recent years, there is a lack of studies on markers to predict the frequent exacerbator phenotype of AECOPD. The current study aimed to develop a new predictive model for the frequent exacerbator phenotype of AECOPD based on rapid, inexpensive, and easily obtained routine markers. Methods: This was a single-center, retrospective study that enrolled a total of 2,236 AECOPD patients. The participants were divided into two groups based on the frequency of exacerbations: infrequent group (n=1,827) and frequent group (n=409). They underwent a complete blood count, as well as blood biochemistry, blood lipid and coagulation testing, and general characteristics were also recorded. Univariate analysis and binary multivariate logistic regression analyses were used to explore independent risk factors for the frequent exacerbator phenotype of AECOPD, which could be used as components of a new predictive model. The receiver operator characteristic (ROC) curve was used to assess the predictive value of the new model, which consisted of all significant risk factors predicting the primary outcome. The nomogram risk prediction model was established using R software. Results: Age, gender, length of stay (LOS), neutrophils, monocytes, eosinophils, direct bilirubin (DBil), gamma-glutamyl transferase (GGT), and the glucose-to-lymphocyte ratio (GLR) were independent risk factors for the frequent exacerbator phenotype of AECOPD. The area under the curve (AUC) of the new predictive model was 0.681 [95% confidence interval (CI): 0.653–0.708], and the sensitivity was 63.6% (95% CI: 58.9–68.2%) and the specificity was 65.0% (95% CI: 60.3–69.6%). Conclusions: A new predictive model based on demographic characteristics and blood parameters can be used to predict the frequency of acute exacerbations in the management of chronic obstructive pulmonary disease (COPD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyf完成签到,获得积分10
2秒前
宗道之发布了新的文献求助10
2秒前
某某某发布了新的文献求助10
2秒前
科研通AI2S应助李恩乐采纳,获得10
2秒前
gggja发布了新的文献求助10
2秒前
ypp完成签到,获得积分10
3秒前
思源应助韩月采纳,获得10
4秒前
lzc发布了新的文献求助10
4秒前
5秒前
5秒前
大个应助高手中的糕手采纳,获得10
6秒前
万能图书馆应助TMY采纳,获得10
9秒前
rxx发布了新的文献求助10
11秒前
11秒前
11秒前
yjf完成签到,获得积分10
14秒前
14秒前
欢喜豌豆发布了新的文献求助10
15秒前
16秒前
好想被风刮走完成签到,获得积分10
16秒前
花痴的冰蓝完成签到,获得积分10
17秒前
文茵完成签到,获得积分10
18秒前
我是老大应助无情飞风采纳,获得10
19秒前
19秒前
在水一方应助rxx采纳,获得10
20秒前
21秒前
Owen应助BaATor采纳,获得10
22秒前
23秒前
拉长的问晴完成签到,获得积分10
23秒前
欢喜豌豆完成签到,获得积分10
23秒前
傅子遇发布了新的文献求助10
25秒前
自由发布了新的文献求助50
26秒前
26秒前
grammays发布了新的文献求助10
26秒前
魁梧的阑悦完成签到,获得积分10
27秒前
29秒前
iWatchTheMoon应助可以的采纳,获得20
31秒前
无情飞风发布了新的文献求助10
31秒前
Weirdo完成签到,获得积分10
32秒前
田様应助复杂的绮兰采纳,获得10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163503
求助须知:如何正确求助?哪些是违规求助? 2814440
关于积分的说明 7904592
捐赠科研通 2473917
什么是DOI,文献DOI怎么找? 1317195
科研通“疑难数据库(出版商)”最低求助积分说明 631625
版权声明 602188