亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A predictive model for frequent exacerbator phenotype of acute exacerbations of chronic obstructive pulmonary disease

医学 列线图 内科学 逻辑回归 中性粒细胞与淋巴细胞比率 接收机工作特性 回顾性队列研究 红细胞分布宽度 慢性阻塞性肺疾病急性加重期 胃肠病学 肺病 淋巴细胞
作者
Yan Zhang,Shuping Zheng,Yang-Fan Hou,Xueyan Jie,Dan Wang,Hongju Da,Hongxin Li,Jin He,Hongyan Zhao,Jiang-Hao Liu,Yu Ma,Zhihui Qiang,Wei Li,Ming Zhang,Shan Hu,Yuanyuan Wu,Hongyang Shi,Liang Zeng,Xin Sun,Yun Liu
出处
期刊:Journal of Thoracic Disease [AME Publishing Company]
卷期号:15 (12): 6502-6514 被引量:1
标识
DOI:10.21037/jtd-23-931
摘要

Background: The frequent exacerbator phenotype of acute exacerbations of chronic obstructive pulmonary disease (AECOPD) is characterized by experiencing at least two exacerbations per year, leading to a significant economic burden on healthcare systems worldwide. Although several biomarkers have been shown to be effective in assessing AECOPD severity in recent years, there is a lack of studies on markers to predict the frequent exacerbator phenotype of AECOPD. The current study aimed to develop a new predictive model for the frequent exacerbator phenotype of AECOPD based on rapid, inexpensive, and easily obtained routine markers. Methods: This was a single-center, retrospective study that enrolled a total of 2,236 AECOPD patients. The participants were divided into two groups based on the frequency of exacerbations: infrequent group (n=1,827) and frequent group (n=409). They underwent a complete blood count, as well as blood biochemistry, blood lipid and coagulation testing, and general characteristics were also recorded. Univariate analysis and binary multivariate logistic regression analyses were used to explore independent risk factors for the frequent exacerbator phenotype of AECOPD, which could be used as components of a new predictive model. The receiver operator characteristic (ROC) curve was used to assess the predictive value of the new model, which consisted of all significant risk factors predicting the primary outcome. The nomogram risk prediction model was established using R software. Results: Age, gender, length of stay (LOS), neutrophils, monocytes, eosinophils, direct bilirubin (DBil), gamma-glutamyl transferase (GGT), and the glucose-to-lymphocyte ratio (GLR) were independent risk factors for the frequent exacerbator phenotype of AECOPD. The area under the curve (AUC) of the new predictive model was 0.681 [95% confidence interval (CI): 0.653–0.708], and the sensitivity was 63.6% (95% CI: 58.9–68.2%) and the specificity was 65.0% (95% CI: 60.3–69.6%). Conclusions: A new predictive model based on demographic characteristics and blood parameters can be used to predict the frequency of acute exacerbations in the management of chronic obstructive pulmonary disease (COPD).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的秋柳完成签到 ,获得积分10
刚刚
刚刚
和光同尘完成签到,获得积分10
2秒前
柚子完成签到 ,获得积分10
3秒前
材料生发布了新的文献求助10
5秒前
9秒前
13秒前
万事胜意完成签到 ,获得积分10
15秒前
19秒前
minkeyantong完成签到 ,获得积分10
25秒前
xintai完成签到,获得积分10
28秒前
材料生完成签到,获得积分10
32秒前
丘比特应助wu采纳,获得30
32秒前
共享精神应助zhaoyali采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
CAOHOU应助科研通管家采纳,获得10
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
CAOHOU应助科研通管家采纳,获得10
38秒前
CAOHOU应助科研通管家采纳,获得10
38秒前
38秒前
乐乐应助科研通管家采纳,获得10
38秒前
38秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
乐乐应助科研通管家采纳,获得10
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
姚奋斗完成签到,获得积分10
39秒前
40秒前
橙子完成签到,获得积分10
40秒前
wq完成签到 ,获得积分10
40秒前
李爱国应助超级野狼采纳,获得10
41秒前
黄任行完成签到,获得积分10
43秒前
44秒前
zhaoyali发布了新的文献求助10
46秒前
50秒前
lihongchi发布了新的文献求助10
50秒前
51秒前
一只大嵩鼠完成签到 ,获得积分10
54秒前
pay完成签到,获得积分10
55秒前
超级野狼发布了新的文献求助10
55秒前
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754672
求助须知:如何正确求助?哪些是违规求助? 5488707
关于积分的说明 15380490
捐赠科研通 4893182
什么是DOI,文献DOI怎么找? 2631791
邀请新用户注册赠送积分活动 1579727
关于科研通互助平台的介绍 1535475