Three-way evidence theory-based density peak clustering with the principle of justifiable granularity

粒度 聚类分析 计算机科学 数据挖掘 功能(生物学) 选择(遗传算法) 钥匙(锁) 最近邻链算法 星团(航天器) 数学 算法 数学优化 人工智能 相关聚类 树冠聚类算法 计算机安全 进化生物学 生物 程序设计语言 操作系统
作者
Hengrong Ju,Lu Yang,Weiping Ding,Jinxin Cao,Xibei Yang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:152: 111217-111217 被引量:3
标识
DOI:10.1016/j.asoc.2023.111217
摘要

Clustering by fast search and find of density peaks (DPC) is an effective clustering approach that can find all the cluster centers at once with just one parameter and without iterative processing. However, the cutoff distance, a key parameter of density measurement in the DPC approach, affects the quality of the final clustering results. Its selection relies on experimental experience and lacks of a semantic explanation. Furthermore, the allocation strategy of the traditional DPC approach may cause several points to be assigned incorrectly, leading to subsequent points being assigned incorrectly and ultimately forming continuous allocation errors. To overcome the deficiencies, this paper proposes a novel three-way evidence theory-based density peak clustering with the principle of justifiable granularity (3W-PEDP). First, the computation of the cutoff distance is converted into the search for nearest neighbors. From the perspective of granular computing, 3W-PEDP transforms the neighbor selection issue into the construction of justifiable granularity. And the optimal neighbors can be achieved with the construction of coverage and specificity criteria. Second, inspired by three-way clustering, we adopt a two-stage method for sample allocation. On the one hand, for core point allocation, a two-layer nearest neighbor is constructed based on the achieved optimal neighbors. On the other hand, we designed a new evidence mass function to guide us in assigning the remaining points. In this novel evidence mass function, not only the labels of the assigned samples are considered, but also the information of the neighborhoods around the unassigned samples is fused. Finally, we assess the effectiveness of 3W-PEDP on numerous public synthetic datasets and UCI real-world datasets. Then, detail comparing results with several popular clustering methods are presented. In addition, experimental studies verify the effectiveness of constructing justifiable granularity in selecting the optimal neighbors. The experimental results demonstrate 3W-PEDP has good adaptability and robustness, which can achieve better clustering performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
obito发布了新的文献求助30
刚刚
大意的友儿完成签到,获得积分10
刚刚
3秒前
vergegung发布了新的文献求助10
3秒前
爆米花应助Han采纳,获得10
4秒前
zhyi完成签到,获得积分10
4秒前
Huanghh完成签到,获得积分10
4秒前
pian完成签到,获得积分10
5秒前
平常的伊发布了新的文献求助10
5秒前
speak完成签到,获得积分10
5秒前
7秒前
Huanghh发布了新的文献求助10
8秒前
科研通AI2S应助lu采纳,获得10
9秒前
沸腾的大海完成签到,获得积分10
9秒前
爱听歌的忆南完成签到,获得积分20
10秒前
mmyhn发布了新的文献求助10
10秒前
彭于晏应助vergegung采纳,获得10
12秒前
木叶研发布了新的文献求助10
13秒前
14秒前
15秒前
自由的沛山完成签到,获得积分10
16秒前
乐乐应助爱听歌的忆南采纳,获得10
17秒前
852应助落寞砖家采纳,获得10
18秒前
排骨大王发布了新的文献求助10
18秒前
小马甲应助唠叨的宝马采纳,获得10
18秒前
18秒前
Jasper应助橙子采纳,获得10
18秒前
19秒前
20秒前
22秒前
22秒前
唠叨的宝马完成签到,获得积分10
22秒前
22秒前
科研通AI2S应助木叶研采纳,获得10
23秒前
落寞砖家完成签到,获得积分10
24秒前
25秒前
帅气鹭洋发布了新的文献求助10
26秒前
liriyii发布了新的文献求助10
26秒前
26秒前
落寞砖家发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959401
求助须知:如何正确求助?哪些是违规求助? 3505622
关于积分的说明 11124998
捐赠科研通 3237410
什么是DOI,文献DOI怎么找? 1789120
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844