Three-way evidence theory-based density peak clustering with the principle of justifiable granularity

粒度 聚类分析 计算机科学 数据挖掘 功能(生物学) 选择(遗传算法) 钥匙(锁) 最近邻链算法 星团(航天器) 数学 算法 数学优化 人工智能 相关聚类 树冠聚类算法 计算机安全 进化生物学 生物 程序设计语言 操作系统
作者
Hengrong Ju,Lu Yang,Weiping Ding,Jinxin Cao,Xibei Yang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:152: 111217-111217 被引量:11
标识
DOI:10.1016/j.asoc.2023.111217
摘要

Clustering by fast search and find of density peaks (DPC) is an effective clustering approach that can find all the cluster centers at once with just one parameter and without iterative processing. However, the cutoff distance, a key parameter of density measurement in the DPC approach, affects the quality of the final clustering results. Its selection relies on experimental experience and lacks of a semantic explanation. Furthermore, the allocation strategy of the traditional DPC approach may cause several points to be assigned incorrectly, leading to subsequent points being assigned incorrectly and ultimately forming continuous allocation errors. To overcome the deficiencies, this paper proposes a novel three-way evidence theory-based density peak clustering with the principle of justifiable granularity (3W-PEDP). First, the computation of the cutoff distance is converted into the search for nearest neighbors. From the perspective of granular computing, 3W-PEDP transforms the neighbor selection issue into the construction of justifiable granularity. And the optimal neighbors can be achieved with the construction of coverage and specificity criteria. Second, inspired by three-way clustering, we adopt a two-stage method for sample allocation. On the one hand, for core point allocation, a two-layer nearest neighbor is constructed based on the achieved optimal neighbors. On the other hand, we designed a new evidence mass function to guide us in assigning the remaining points. In this novel evidence mass function, not only the labels of the assigned samples are considered, but also the information of the neighborhoods around the unassigned samples is fused. Finally, we assess the effectiveness of 3W-PEDP on numerous public synthetic datasets and UCI real-world datasets. Then, detail comparing results with several popular clustering methods are presented. In addition, experimental studies verify the effectiveness of constructing justifiable granularity in selecting the optimal neighbors. The experimental results demonstrate 3W-PEDP has good adaptability and robustness, which can achieve better clustering performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助激昂的柚子采纳,获得10
刚刚
2秒前
3秒前
搜集达人应助哈哈哈哈采纳,获得10
3秒前
思大锤发布了新的文献求助10
3秒前
3秒前
李梦关注了科研通微信公众号
3秒前
5秒前
6秒前
天天快乐应助调皮帆布鞋采纳,获得10
6秒前
jojo144发布了新的文献求助10
6秒前
6秒前
科研通AI5应助菜菜采纳,获得10
6秒前
skittles发布了新的文献求助20
6秒前
6秒前
发文必过发布了新的文献求助10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
hh发布了新的文献求助10
8秒前
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
cosmos应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
琥珀完成签到,获得积分10
9秒前
522完成签到,获得积分10
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125011
求助须知:如何正确求助?哪些是违规求助? 4329012
关于积分的说明 13489539
捐赠科研通 4163648
什么是DOI,文献DOI怎么找? 2282463
邀请新用户注册赠送积分活动 1283623
关于科研通互助平台的介绍 1222905