已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Survey on Large Language Models for Software Engineering

计算机科学 工作流程 数据科学 数据库
作者
Quanjun Zhang,Chunrong Fang,Yang Xie,Yaxin Zhang,Yun Yang,Weisong Sun,Shengcheng Yu,Chunrong Fang
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2312.15223
摘要

Software Engineering (SE) is the systematic design, development, and maintenance of software applications, underpinning the digital infrastructure of our modern mainworld. Very recently, the SE community has seen a rapidly increasing number of techniques employing Large Language Models (LLMs) to automate a broad range of SE tasks. Nevertheless, existing information of the applications, effects, and possible limitations of LLMs within SE is still not well-studied. In this paper, we provide a systematic survey to summarize the current state-of-the-art research in the LLM-based SE community. We summarize 30 representative LLMs of Source Code across three model architectures, 15 pre-training objectives across four categories, and 16 downstream tasks across five categories. We then present a detailed summarization of the recent SE studies for which LLMs are commonly utilized, including 155 studies for 43 specific code-related tasks across four crucial phases within the SE workflow. Besides, we summarize existing attempts to empirically evaluate LLMs in SE, such as benchmarks, empirical studies, and exploration of SE education. We also discuss several critical aspects of optimization and applications of LLMs in SE, such as security attacks, model tuning, and model compression. Finally, we highlight several challenges and potential opportunities on applying LLMs for future SE studies, such as exploring domain LLMs and constructing clean evaluation datasets. Overall, our work can help researchers gain a comprehensive understanding about the achievements of the existing LLM-based SE studies and promote the practical application of these techniques. Our artifacts are publicly available and will continuously updated at the living repository: \url{https://github.com/iSEngLab/AwesomeLLM4SE}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿色的大嘴鸟完成签到 ,获得积分10
5秒前
llnysl完成签到 ,获得积分10
6秒前
Qc完成签到 ,获得积分10
14秒前
小糖豆完成签到,获得积分10
17秒前
17秒前
18秒前
SciGPT应助Nitric_Oxide采纳,获得40
19秒前
潇洒的擎苍完成签到,获得积分10
20秒前
MOD发布了新的文献求助10
24秒前
蒲公英完成签到,获得积分10
25秒前
英勇羿发布了新的文献求助10
27秒前
慕青应助lijing采纳,获得10
27秒前
ccm应助科研通管家采纳,获得10
28秒前
丘比特应助科研通管家采纳,获得10
28秒前
28秒前
keepmoving_12完成签到 ,获得积分10
29秒前
Ava应助meizi采纳,获得10
29秒前
MOD完成签到,获得积分10
29秒前
李爱国应助淡然的跳跳糖采纳,获得10
33秒前
34秒前
36秒前
胡林完成签到 ,获得积分0
36秒前
neocc123完成签到 ,获得积分10
36秒前
善学以致用应助sadfasf采纳,获得10
39秒前
yanmengzhen完成签到 ,获得积分10
40秒前
40秒前
烟花应助中意采纳,获得10
40秒前
41秒前
meizi发布了新的文献求助10
42秒前
乐乐乐乐乐乐应助英勇羿采纳,获得10
43秒前
Samir完成签到,获得积分10
43秒前
44秒前
淡定小白菜完成签到,获得积分10
45秒前
丁点完成签到 ,获得积分10
45秒前
Wei完成签到 ,获得积分10
46秒前
大模型应助Ade采纳,获得10
46秒前
47秒前
nuki完成签到 ,获得积分10
48秒前
49秒前
49秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142459
求助须知:如何正确求助?哪些是违规求助? 2793361
关于积分的说明 7806531
捐赠科研通 2449661
什么是DOI,文献DOI怎么找? 1303364
科研通“疑难数据库(出版商)”最低求助积分说明 626861
版权声明 601309