High completeness multi-view stereo for dense reconstruction of large-scale urban scenes

完备性(序理论) 比例(比率) 计算机视觉 人工智能 计算机科学 计算机图形学(图像) 地理 数学 地图学 数学分析
作者
Yongjian Liao,Xuexi Zhang,Nan Huang,Chuanyu Fu,Zijie Huang,Qing Cao,Zhengxin Xu,Xiaoming Xiong,Shuting Cai
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:209: 173-196
标识
DOI:10.1016/j.isprsjprs.2024.01.018
摘要

Multi-View Stereo (MVS) algorithms remain a significant challenge in reconstructing a 3D model with high completeness due to the difficulty in recovering weakly textured regions and detailed parts of large-scale urban scenes. Although the Image Pyramid Structure is a popular approach for dealing with weakly textured regions, it also leads to the loss of detailed information. The proposed method solves these problems with three new strategies: (1) We propose the optical flow consistency for recovering details. The optical flow consistency improved the sensitivity of the image pyramid structure to details by estimating the motion vector of each pixel point. We proposed a novel detail restorer based on optical flow consistency which improves the link between adjacent scales in the image pyramid structure. (2) Geometric consistency based on epipolar line constraints is proposed to recover weakly textured regions. The proposed epipolar line constraints improve the robustness of traditional geometric consistency, which avoids the problem of mismatching in weakly textured regions. (3) A depth-filling strategy is utilized to fill the loss of depth information of weakly textured regions. Image gradient is utilized to fill the gap of depth information. The filled result is utilized as the priori information to smooth the depth of weakly textured regions. Experimental results on the ETH3D, UDD5 and SenseFly benchmark datasets demonstrate that the proposed method outperforms three state-of-the-art methods (ACMMP, EPNet, DeepC-MVS), significantly improving the completeness of the 3D models. The source code of the develop method is available at https://github.com/Liaoyongjian1/HC-MVS.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
富贵儿完成签到 ,获得积分10
1秒前
iyNew_xx完成签到,获得积分10
4秒前
wwwaat发布了新的文献求助10
4秒前
4秒前
5秒前
CipherSage应助周琦采纳,获得10
5秒前
asdfasdfj完成签到,获得积分10
6秒前
缓缓发布了新的文献求助10
7秒前
gb完成签到 ,获得积分10
8秒前
asdfasdfj发布了新的文献求助10
9秒前
11秒前
fkwwdamocles发布了新的文献求助10
11秒前
诚心靳发布了新的文献求助10
12秒前
脑洞疼应助优美飞薇采纳,获得10
12秒前
16秒前
18秒前
Cynthia完成签到,获得积分10
18秒前
20秒前
完美世界应助优秀醉易采纳,获得10
20秒前
21秒前
ihc完成签到,获得积分10
21秒前
Ava应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
bkagyin应助科研通管家采纳,获得80
22秒前
慕青应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
田様应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
guilin应助科研通管家采纳,获得10
22秒前
23秒前
whn完成签到,获得积分10
23秒前
CY完成签到 ,获得积分10
25秒前
26秒前
笑点低的豪完成签到,获得积分10
27秒前
27秒前
雨相所至应助whn采纳,获得30
27秒前
苏书白应助restudy68采纳,获得10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150257
求助须知:如何正确求助?哪些是违规求助? 2801405
关于积分的说明 7844390
捐赠科研通 2458892
什么是DOI,文献DOI怎么找? 1308773
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721