超级电容器
纳米技术
材料科学
电极
化学
电化学
物理化学
作者
Asghar Ali,W.A. Ghaly,Majed Yousef Awaji,Othman Hakami,Waleed M. Alamier,Syed Kashif Ali,Majed Y. A. Almashnowi,Enaam A. Al-Harthi,Muhammad Rashid,Mohd Imran
出处
期刊:Journal of The Electrochemical Society
[The Electrochemical Society]
日期:2024-03-13
卷期号:171 (3): 030526-030526
被引量:6
标识
DOI:10.1149/1945-7111/ad3394
摘要
Supercapacitors (SCs) are gaining popularity as energy storage devices (ESDs), and their electrode materials strongly influence their performance. There is no doubt that SCs are capable and reliable ESDs for producing high power even when they operate at low energy levels. However, highly efficient electrode materials are still required to make the SC an effective choice for ESD. The surface modification of the electrode materials can improve the power and energy density of materials, which is beneficial for enhancing the electrochemical performance of the SC. During the past few years, more research has been reported to develop new electrode materials for improving SCs’ energy density, charge retention, specific capacitance, stability, and rate performance. This review focuses on the execution of progressive organic-based electrode materials called metal-organic frameworks (MOFs) in the SC. The main purpose of this review is to explain the MOFs-based electrode materials and their progress in the field of SC. MOFs are advanced materials for supercapacitors because they allow for various features, including dimensions. They offer high stability, high capacity, adjustable pore size, greater aspect ratios, larger surface areas, and stronger bonding between metal and organic linkers than the previously reported electrode materials (Metal oxide, sulfide, phosphate, etc). These properties of MOFs-based electrode materials make them promising for electrochemical energy storage applications. Finally, the challenges and perspectives of MOFs-based electrode materials are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI