Fast Multiview Anchor-Graph Clustering

聚类分析 离散化 计算机科学 嵌入 图形 计算复杂性理论 离散优化 光谱聚类 算法 图嵌入 数学优化 图形绘制 最优化问题 理论计算机科学 数学 人工智能 数学分析
作者
Ben Yang,Xuetao Zhang,Jinghan Wu,Feiping Nie,Zhiping Lin,Fei Wang,Badong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tnnls.2024.3359690
摘要

Due to its high computational complexity, graph-based methods have limited applicability in large-scale multiview clustering tasks. To address this issue, many accelerated algorithms, especially anchor graph-based methods and indicator learning-based methods, have been developed and made a great success. Nevertheless, since the restrictions of the optimization strategy, these accelerated methods still need to approximate the discrete graph-cutting problem to a continuous spectral embedding problem and utilize different discretization strategies to obtain discrete sample categories. To avoid the loss of effectiveness and efficiency caused by the approximation and discretization, we establish a discrete fast multiview anchor graph clustering (FMAGC) model that first constructs an anchor graph of each view and then generates a discrete cluster indicator matrix by solving the discrete multiview graph-cutting problem directly. Since the gradient descent-based method makes it hard to solve this discrete model, we propose a fast coordinate descent-based optimization strategy with linear complexity to solve it without approximating it as a continuous one. Extensive experiments on widely used normal and large-scale multiview datasets show that FMAGC can improve clustering effectiveness and efficiency compared to other state-of-the-art baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一应助犹豫囧采纳,获得80
刚刚
小海完成签到,获得积分10
刚刚
科研通AI2S应助liang采纳,获得10
刚刚
刚刚
1秒前
善学以致用应助爱科研采纳,获得10
2秒前
2秒前
完美芹发布了新的文献求助10
2秒前
3秒前
黄俊完成签到,获得积分10
3秒前
fifteen应助Yy采纳,获得10
4秒前
4秒前
调研昵称发布了新的文献求助10
4秒前
Lee完成签到,获得积分10
4秒前
myb关闭了myb文献求助
5秒前
临床小牛马关注了科研通微信公众号
5秒前
冬藏完成签到,获得积分10
5秒前
6秒前
6秒前
彭于晏应助积极的忆曼采纳,获得10
6秒前
Yuan完成签到,获得积分10
6秒前
tianyi1994发布了新的文献求助10
6秒前
水池边发布了新的文献求助10
7秒前
科研通AI2S应助略略略爱采纳,获得10
7秒前
9秒前
lettersong发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
micaixing2006发布了新的文献求助10
12秒前
12秒前
CipherSage应助坚强的小白菜采纳,获得10
13秒前
Ava应助放肆青春采纳,获得10
13秒前
今后应助完美丹南采纳,获得10
13秒前
1539068900完成签到,获得积分10
13秒前
14秒前
tianyi1994完成签到,获得积分10
14秒前
15秒前
JamesPei应助shellyAPTX4869采纳,获得10
15秒前
打打应助kyou采纳,获得10
15秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218586
求助须知:如何正确求助?哪些是违规求助? 2867716
关于积分的说明 8157958
捐赠科研通 2534732
什么是DOI,文献DOI怎么找? 1367178
科研通“疑难数据库(出版商)”最低求助积分说明 644960
邀请新用户注册赠送积分活动 618144