Strain-mediated phase crossover in Ruddlesden–Popper nickelates

超导电性 材料科学 凝聚态物理 价(化学) 钙钛矿(结构) 相(物质) 薄膜 结晶学 纳米技术 化学 物理 有机化学
作者
Ting Cui,Songhee Choi,Ting Lin,Chen Liu,Gang Wang,Ningning Wang,Shengru Chen,Haitao Hong,Dongke Rong,Qianying Wang,Qiao Jin,Jiaou Wang,Lin Gu,Chen Ge,Can Wang,Jinguang Cheng,Qinghua Zhang,Liang Si,Kuijuan Jin,Er‐Jia Guo
出处
期刊:Communications materials [Springer Nature]
卷期号:5 (1) 被引量:11
标识
DOI:10.1038/s43246-024-00478-4
摘要

Abstract Recent progress on the signatures of pressure-induced high-temperature superconductivity in Ruddlesden–Popper (RP) nickelates (La n +1 Ni n O 3 n +1 ) has attracted growing interest in both theoretical calculations and experimental efforts. The fabrication of high-quality single-crystalline RP nickelate thin films is critical for possible reducing the superconducting transition pressure and advancing applications in microelectronics in the future. In this study, we report the observations of an active phase transition in RP nickelate films induced by misfit strain. We found that RP nickelate films favor the perovskite structure ( n = ∞) under tensile strains, while compressive strains stabilize the La 3 Ni 2 O 7 ( n = 2) phase. The selection of distinct phases is governed by the strain dependent formation energy and electronic configuration. In compressively strained La 3 Ni 2 O 7 , we experimentally determined the e g splitting energy is ~0.2 eV and electrons prefer to occupy in-plane orbitals. First-principles calculations unveil a robust coupling between strain effects and the valence state of Ni ions in RP nickelates, suggesting a dual driving force for the inevitable phase co-existence transition in RP nickelates. Our work underscores the sensitivity of RP nickelate formation to epitaxial strain, presenting a significant challenge in fabricating pure-phase RP nickelate films. Therefore, special attention to stacking defects and grain boundaries between different RP phases is essential when discussing the pressure-induced superconductivity in RP nickelates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
滴滴发布了新的文献求助10
1秒前
1秒前
3秒前
浦肯野应助decade采纳,获得30
4秒前
cathy关注了科研通微信公众号
4秒前
4秒前
renxx发布了新的文献求助10
4秒前
5秒前
5秒前
勤奋幻天完成签到 ,获得积分10
5秒前
fxx完成签到,获得积分10
6秒前
善良的思萱完成签到,获得积分20
7秒前
Peak_Chen应助dsa2815采纳,获得30
7秒前
7秒前
wang完成签到,获得积分20
8秒前
星空发布了新的文献求助10
8秒前
Zcool发布了新的文献求助10
8秒前
俏皮的醉卉完成签到 ,获得积分10
9秒前
9秒前
9秒前
打打应助小飞采纳,获得10
9秒前
9秒前
zxin完成签到,获得积分10
9秒前
10秒前
10秒前
小碎步关注了科研通微信公众号
10秒前
自然秋柳完成签到 ,获得积分10
11秒前
Akim应助黒面包采纳,获得30
11秒前
11秒前
11秒前
WUHUDASM发布了新的文献求助10
11秒前
11秒前
风中楷瑞发布了新的文献求助30
11秒前
研友_Zl1w68发布了新的文献求助30
12秒前
12秒前
987发布了新的文献求助10
12秒前
ggg完成签到,获得积分10
13秒前
13秒前
LLL完成签到,获得积分10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487388
求助须知:如何正确求助?哪些是违规求助? 3075425
关于积分的说明 9140718
捐赠科研通 2767617
什么是DOI,文献DOI怎么找? 1518712
邀请新用户注册赠送积分活动 703221
科研通“疑难数据库(出版商)”最低求助积分说明 701699