亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Wildlife detection and identification based on the improved YOLOv7

野生动物 鉴定(生物学) 稳健性(进化) 交叉口(航空) 计算机科学 目标检测 人工智能 数据挖掘 模式识别(心理学) 地理 生态学 地图学 生物 生物化学 基因 化学
作者
Zhifu Sun,Yongquan Zhang
标识
DOI:10.1117/12.3021527
摘要

To address the problems of low accuracy and poor robustness of wildlife object Detection, this paper proposes an improved wildlife detection algorithm based on YOLOv7(You Only Look Once v7). The proposed algorithm introduces Deformable ConvNets v2 (DCNv2) and Wise-IoU (WIoU) to improve the model feature extraction and learning ability. In the self-built wildlife data set, when the Intersection over Union (IoU) was 0.5, the proposed algorithm was in36wildlife categories, the mean Average Precision (mAP) increased by 1.2 percentage points over the original YOLOv7percentage points, precision increased by 4.1 percentage points, and recall increased by 2.2 percentage points. Experimental results show that the proposed improved YOLOv7 algorithm performance is better, more can meet the actual wildlife protection work of animal detection and identification accuracy requirements, contribute to the wildlife local survey work, and save a lot of related resource cost, to a certain extent, promote the wildlife protection work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
ning完成签到 ,获得积分10
15秒前
上官若男应助周凯采纳,获得10
18秒前
19秒前
斯文败类应助读书的时候采纳,获得10
30秒前
32秒前
komorebi发布了新的文献求助10
36秒前
Akim应助撒旦asd采纳,获得10
44秒前
51秒前
小宋爱科研完成签到 ,获得积分10
52秒前
非蛋白呼吸商完成签到,获得积分10
54秒前
mengliu完成签到,获得积分0
56秒前
华仔应助ohhhhhoho采纳,获得10
1分钟前
Criminology34应助komorebi采纳,获得10
1分钟前
1分钟前
zqq完成签到,获得积分0
1分钟前
1分钟前
1分钟前
英俊的铭应助读书的时候采纳,获得10
1分钟前
鱼贝贝完成签到 ,获得积分10
1分钟前
周凯发布了新的文献求助10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
SAIL完成签到 ,获得积分10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
ohhhhhoho发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
烟消云散完成签到,获得积分10
2分钟前
孙泉发布了新的文献求助10
2分钟前
黎明前发布了新的文献求助10
2分钟前
古今奇观完成签到 ,获得积分10
2分钟前
黎明前完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Weiyu完成签到 ,获得积分10
2分钟前
MiaCong完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731842
求助须知:如何正确求助?哪些是违规求助? 5333685
关于积分的说明 15321719
捐赠科研通 4877673
什么是DOI,文献DOI怎么找? 2620524
邀请新用户注册赠送积分活动 1569833
关于科研通互助平台的介绍 1526289