亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ProtoMGAE: Prototype-Aware Masked Graph Auto-Encoder for Graph Representation Learning

图形 计算机科学 编码器 代表(政治) 人工智能 理论计算机科学 政治学 政治 操作系统 法学
作者
Yimei Zheng,Caiyan Jia
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (6): 1-22 被引量:2
标识
DOI:10.1145/3649143
摘要

Graph self-supervised representation learning has gained considerable attention and demonstrated remarkable efficacy in extracting meaningful representations from graphs, particularly in the absence of labeled data. Two representative methods in this domain are graph auto-encoding and graph contrastive learning. However, the former methods primarily focus on global structures, potentially overlooking some fine-grained information during reconstruction. The latter methods emphasize node similarity across correlated views in the embedding space, potentially neglecting the inherent global graph information in the original input space. Moreover, handling incomplete graphs in real-world scenarios, where original features are unavailable for certain nodes, poses challenges for both types of methods. To alleviate these limitations, we integrate masked graph auto-encoding and prototype-aware graph contrastive learning into a unified model to learn node representations in graphs. In our method, we begin by masking a portion of node features and utilize a specific decoding strategy to reconstruct the masked information. This process facilitates the recovery of graphs from a global or macro level and enables handling incomplete graphs easily. Moreover, we treat the masked graph and the original one as a pair of contrasting views, enforcing the alignment and uniformity between their corresponding node representations at a local or micro level. Last, to capture cluster structures from a meso level and learn more discriminative representations, we introduce a prototype-aware clustering consistency loss that is jointly optimized with the preceding two complementary objectives. Extensive experiments conducted on several datasets demonstrate that the proposed method achieves significantly better or competitive performance on downstream tasks, especially for graph clustering, compared with the state-of-the-art methods, showcasing its superiority in enhancing graph representation learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纳兰若微应助科研通管家采纳,获得10
4秒前
纳兰若微应助科研通管家采纳,获得10
4秒前
纳兰若微应助科研通管家采纳,获得10
4秒前
纳兰若微应助科研通管家采纳,获得10
5秒前
YifanWang应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
7秒前
49秒前
医生科学家完成签到 ,获得积分10
1分钟前
1分钟前
王座发布了新的文献求助10
1分钟前
王座完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得20
2分钟前
YifanWang应助科研通管家采纳,获得20
2分钟前
2分钟前
2分钟前
Wilson完成签到 ,获得积分10
2分钟前
Who发布了新的文献求助10
2分钟前
dolphin完成签到 ,获得积分0
2分钟前
璨澄完成签到 ,获得积分10
2分钟前
2分钟前
tylscxf完成签到,获得积分10
3分钟前
3分钟前
xxxxxxh发布了新的文献求助10
3分钟前
3分钟前
怕黑怜阳发布了新的文献求助10
3分钟前
abc完成签到 ,获得积分10
3分钟前
斯文败类应助暴力比巴波采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
怕黑怜阳完成签到,获得积分10
4分钟前
4分钟前
4分钟前
开朗雅霜完成签到,获得积分20
4分钟前
4分钟前
Who发布了新的文献求助10
4分钟前
香蕉觅云应助开朗雅霜采纳,获得10
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307419
求助须知:如何正确求助?哪些是违规求助? 2941050
关于积分的说明 8500270
捐赠科研通 2615428
什么是DOI,文献DOI怎么找? 1428900
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648461