ProtoMGAE: Prototype-Aware Masked Graph Auto-Encoder for Graph Representation Learning

图形 计算机科学 编码器 代表(政治) 人工智能 理论计算机科学 政治学 政治 操作系统 法学
作者
Yimei Zheng,Caiyan Jia
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (6): 1-22 被引量:2
标识
DOI:10.1145/3649143
摘要

Graph self-supervised representation learning has gained considerable attention and demonstrated remarkable efficacy in extracting meaningful representations from graphs, particularly in the absence of labeled data. Two representative methods in this domain are graph auto-encoding and graph contrastive learning. However, the former methods primarily focus on global structures, potentially overlooking some fine-grained information during reconstruction. The latter methods emphasize node similarity across correlated views in the embedding space, potentially neglecting the inherent global graph information in the original input space. Moreover, handling incomplete graphs in real-world scenarios, where original features are unavailable for certain nodes, poses challenges for both types of methods. To alleviate these limitations, we integrate masked graph auto-encoding and prototype-aware graph contrastive learning into a unified model to learn node representations in graphs. In our method, we begin by masking a portion of node features and utilize a specific decoding strategy to reconstruct the masked information. This process facilitates the recovery of graphs from a global or macro level and enables handling incomplete graphs easily. Moreover, we treat the masked graph and the original one as a pair of contrasting views, enforcing the alignment and uniformity between their corresponding node representations at a local or micro level. Last, to capture cluster structures from a meso level and learn more discriminative representations, we introduce a prototype-aware clustering consistency loss that is jointly optimized with the preceding two complementary objectives. Extensive experiments conducted on several datasets demonstrate that the proposed method achieves significantly better or competitive performance on downstream tasks, especially for graph clustering, compared with the state-of-the-art methods, showcasing its superiority in enhancing graph representation learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助xxx采纳,获得10
1秒前
乔治琪完成签到,获得积分10
1秒前
1秒前
han发布了新的文献求助10
1秒前
dorothy_meng完成签到,获得积分10
2秒前
lin229发布了新的文献求助10
2秒前
大模型应助DreamLIn采纳,获得10
3秒前
领导范儿应助小伙子采纳,获得10
3秒前
3秒前
机灵柚子应助好蓝采纳,获得10
3秒前
帕克完成签到,获得积分10
4秒前
gapper发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
lili完成签到,获得积分10
6秒前
6秒前
6秒前
zzz发布了新的文献求助10
6秒前
6秒前
张z给张z的求助进行了留言
6秒前
orixero应助日匀采纳,获得10
6秒前
7秒前
Akim应助海藻采纳,获得10
7秒前
chen完成签到,获得积分10
8秒前
jack应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
9秒前
二十六画生完成签到,获得积分10
9秒前
思源应助SEAL采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
dianeluo发布了新的文献求助10
9秒前
田様应助科研通管家采纳,获得10
9秒前
彩色石头发布了新的文献求助10
9秒前
www发布了新的文献求助10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
隐形曼青应助火星人采纳,获得10
10秒前
狄秋白发布了新的文献求助10
10秒前
所所应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261749
求助须知:如何正确求助?哪些是违规求助? 4422906
关于积分的说明 13767729
捐赠科研通 4297318
什么是DOI,文献DOI怎么找? 2357911
邀请新用户注册赠送积分活动 1354280
关于科研通互助平台的介绍 1315383