ProtoMGAE: Prototype-Aware Masked Graph Auto-Encoder for Graph Representation Learning

图形 计算机科学 编码器 代表(政治) 人工智能 理论计算机科学 政治 政治学 法学 操作系统
作者
Yimei Zheng,Caiyan Jia
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (6): 1-22 被引量:2
标识
DOI:10.1145/3649143
摘要

Graph self-supervised representation learning has gained considerable attention and demonstrated remarkable efficacy in extracting meaningful representations from graphs, particularly in the absence of labeled data. Two representative methods in this domain are graph auto-encoding and graph contrastive learning. However, the former methods primarily focus on global structures, potentially overlooking some fine-grained information during reconstruction. The latter methods emphasize node similarity across correlated views in the embedding space, potentially neglecting the inherent global graph information in the original input space. Moreover, handling incomplete graphs in real-world scenarios, where original features are unavailable for certain nodes, poses challenges for both types of methods. To alleviate these limitations, we integrate masked graph auto-encoding and prototype-aware graph contrastive learning into a unified model to learn node representations in graphs. In our method, we begin by masking a portion of node features and utilize a specific decoding strategy to reconstruct the masked information. This process facilitates the recovery of graphs from a global or macro level and enables handling incomplete graphs easily. Moreover, we treat the masked graph and the original one as a pair of contrasting views, enforcing the alignment and uniformity between their corresponding node representations at a local or micro level. Last, to capture cluster structures from a meso level and learn more discriminative representations, we introduce a prototype-aware clustering consistency loss that is jointly optimized with the preceding two complementary objectives. Extensive experiments conducted on several datasets demonstrate that the proposed method achieves significantly better or competitive performance on downstream tasks, especially for graph clustering, compared with the state-of-the-art methods, showcasing its superiority in enhancing graph representation learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
离子电池完成签到,获得积分10
刚刚
栗子呢呢呢完成签到 ,获得积分10
刚刚
三块石头发布了新的文献求助10
1秒前
miezhugong完成签到 ,获得积分10
1秒前
JamesPei应助MY采纳,获得10
1秒前
Bizibili完成签到,获得积分10
2秒前
zdnn完成签到,获得积分10
2秒前
yuHS完成签到,获得积分10
3秒前
英姑应助向蔚采纳,获得10
3秒前
LaTeXer给焦糖泡芙塔的求助进行了留言
3秒前
YH完成签到,获得积分10
4秒前
脚踏实滴完成签到 ,获得积分10
4秒前
小二郎应助咸鱼王采纳,获得10
4秒前
和谐尔阳完成签到 ,获得积分10
4秒前
虚幻沛文完成签到 ,获得积分10
4秒前
miezhugong关注了科研通微信公众号
5秒前
俊逸沛菡完成签到 ,获得积分10
5秒前
三块石头完成签到,获得积分10
5秒前
jzmupyj完成签到,获得积分10
6秒前
大黑完成签到 ,获得积分10
8秒前
Buney完成签到,获得积分10
8秒前
yangzhang发布了新的文献求助10
8秒前
Nuyoah完成签到,获得积分10
10秒前
10秒前
冥冥之极为昭昭应助好困采纳,获得50
10秒前
Jankin完成签到,获得积分10
10秒前
ArdenWang完成签到,获得积分10
10秒前
11秒前
猪美丽发布了新的文献求助10
11秒前
HHHHH完成签到,获得积分10
11秒前
现实的听芹完成签到,获得积分10
11秒前
miku完成签到 ,获得积分10
12秒前
搞怪的白云完成签到 ,获得积分10
13秒前
kiker完成签到,获得积分10
14秒前
qx发布了新的文献求助10
14秒前
Matrix完成签到,获得积分10
14秒前
114555完成签到,获得积分10
15秒前
15秒前
jzmulyl完成签到,获得积分10
15秒前
Rondab应助小城故事和冰雨采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259