电解质
氧化还原
材料科学
化学
X射线
电极
化学工程
无机化学
物理化学
物理
量子力学
工程类
作者
Mohammad Furquan,Saad Ali,Syed Rizwanullah Hussaini,Zahid Manzoor Bhat,Muhammad Aurang Zeb Gul Sial,Atif Saeed Alzahrani,Zain H. Yamani,Mohammad Qamar
出处
期刊:Energy & Fuels
[American Chemical Society]
日期:2024-02-21
卷期号:38 (5): 4699-4710
被引量:1
标识
DOI:10.1021/acs.energyfuels.3c04842
摘要
All-iron redox flow batteries (Fe-RFBs) can be the grid's most cost-effective and environmentally friendly electrochemical energy storage solution. However, low-capacity retention due to electrolyte degradation is the major hurdle in its progress. This study examines the effects of different electrolyte additives and their effects on the Fe-RFBs system in a full-cell configuration. Adding hydrochloric acid (HCl) results in a slow aging of the iron chloride electrolyte compared to that without HCl, leading to improved electrochemical performance. This improvement is evident in terms of both capacity retention and Coulombic efficiency (CE). HCl (0.2 M) addition in the electrolyte results in a discharge capacity retention of around 98% compared with 73% without HCl after 150 cycles. Moreover, the plating patterns of Fe at the negative electrode are also greatly affected due to HCl. Ex situ 3D X-ray tomography of Fe-plated electrodes in the presence and absence of HCl in an all-iron chloride electrolyte within the full-cell system is conducted, and the iron deposition pattern on the electrodes is obtained by FE-SEM. This study reveals the critical role of additives in the reversibility of iron deposition and stripping and its overall effect on cycling life to all iron redox flow batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI