GC-IMS and GC/Q-TOFMS analysis of Maotai-flavor baijiu at different aging times

化学 风味 化学计量学 质谱法 离子迁移光谱法 色谱法 气相色谱-质谱法 气相色谱法 分析化学(期刊) 食品科学
作者
Chenming Fan,Xin Shi,Chunmei Pan,Fangli Zhang,Yuanyuan Zhou,Xiaoge Hou,Ming Hui
出处
期刊:Lebensmittel-Wissenschaft & Technologie [Elsevier BV]
卷期号:192: 115744-115744 被引量:18
标识
DOI:10.1016/j.lwt.2024.115744
摘要

There's a Chinese saying that the older the baijiu, the better it is. This study is an exploration of why baijiu are getting better during storaging. The aging mechanism of baijiu is still in the exploratory stage; therefore, this study used gas chromatography-ion mobility spectroscopy (GC-IMS) coupled with chemometrics and gas chromatography-quadrupole time-of-flight mass spectrometry (GC/Q-TOF MS) to analyze the volatile components of Maotai-flavor baijiu (MFB) at different aging times. Moreover, GC/Q-TOF MS was combined with a machine learning model to analyze the volatile components of MFB with different aging times to gain a deeper understanding of its aging mechanism. Nine major basal volatile organic compounds (VOCs) and 14 differential VOCs of MFB during the aging process were obtained using GC-IMS combined with visual mapping and differential analyses, and data refinement was performed using the GC/Q-TOF MS assay. With aging time, the total esters, except long-chain esters, decreased, and the total acid content increased. Based on these results, 21 characteristics were identified by combining random forest, support vector machine, and logistic regression models. These models were used to discriminate MFB with different aging times, which demonstrated the successful combination of multivariate analysis using multiple detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上好佳发布了新的文献求助10
1秒前
清欢发布了新的文献求助10
1秒前
大模型应助JackeyChen采纳,获得10
2秒前
可爱的函函应助葵小葵采纳,获得10
2秒前
大白薯完成签到,获得积分10
3秒前
安芳发布了新的文献求助10
3秒前
小磊完成签到,获得积分10
4秒前
4秒前
sunqian发布了新的文献求助10
4秒前
虚拟的初丹完成签到,获得积分20
4秒前
5秒前
5秒前
科研通AI5应助阁下宛歆采纳,获得10
6秒前
脑洞疼应助JiangYifan采纳,获得10
6秒前
Andy发布了新的文献求助10
7秒前
热心凡雁发布了新的文献求助10
7秒前
唐艺尹完成签到,获得积分10
8秒前
川为江完成签到,获得积分20
9秒前
10秒前
posh完成签到 ,获得积分10
10秒前
kk_yang完成签到,获得积分10
10秒前
糊涂的含卉完成签到,获得积分10
11秒前
11秒前
12秒前
煤球叶发布了新的文献求助10
13秒前
西洛他唑完成签到 ,获得积分10
13秒前
勤恳的天亦应助唐艺尹采纳,获得20
13秒前
13秒前
14秒前
Aurora完成签到,获得积分10
14秒前
14秒前
欧耶完成签到,获得积分10
15秒前
15秒前
bkagyin应助bemyselfelsa采纳,获得10
15秒前
Hello应助子胥采纳,获得10
16秒前
16秒前
Herrr完成签到,获得积分10
16秒前
蓝海发布了新的文献求助10
16秒前
专注雁桃发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934228
求助须知:如何正确求助?哪些是违规求助? 4202186
关于积分的说明 13056265
捐赠科研通 3976412
什么是DOI,文献DOI怎么找? 2178969
邀请新用户注册赠送积分活动 1195288
关于科研通互助平台的介绍 1106655