Multi-step solar radiation prediction using transformer: A case study from solar radiation data in Tokyo

变压器 均方预测误差 预测建模 计算机科学 太阳能 人工神经网络 环境科学 人工智能 机器学习 工程类 电气工程 电压
作者
Huagang Dong,Pengwei Tang,Bo He,Lei Chen,Zhuangzhuang Zhang,Cheng-Qi Jia
出处
期刊:Journal of Building Physics [SAGE Publishing]
卷期号:47 (4): 421-438 被引量:1
标识
DOI:10.1177/17442591231218831
摘要

The widespread advancement of computer technology resulted in the increasing usage of deep learning models for predicting solar radiation. Numerous studies have been conducted to explore their research potential. Nevertheless, the application of deep learning models in optimizing building energy systems, particularly in a multi-step solar radiation prediction model for model predictive control (MPC), remains a challenging task. This is mainly due to the intricacy of the time series and the possibility of accumulating errors in multistep forecasts. In this study, we propose the development of a transformer-based attention model for predicting multi-step solar irradiation at least 24 h in advance. The model is trained and tested using measured solar irradiation data and temperature forecast data obtained from the Tokyo Meteorological Agency. The findings indicate that the transformer model has the capability to effectively mitigate the issue of error accumulation. Additionally, the generative model exhibits a significant improvement in accuracy, with a 62.35% increase when compared to the conventional regression LSTM model. Additionally, the transformer model has been shown to attain superior prediction stability, mitigate the effects of error accumulation in multi-step forecasting, and circumvent training challenges stemming from gradient propagation issues that can occur with recurrent neural networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Min完成签到,获得积分20
刚刚
rainyoun完成签到 ,获得积分10
刚刚
阳光向秋发布了新的文献求助30
2秒前
pluto应助健壮的怜烟采纳,获得50
3秒前
好好学习发布了新的文献求助10
4秒前
5秒前
HXL完成签到,获得积分20
6秒前
整齐的井完成签到,获得积分10
6秒前
8秒前
万能图书馆应助spyspy采纳,获得10
8秒前
9秒前
整齐的井发布了新的文献求助10
9秒前
领导范儿应助孙意冉采纳,获得10
10秒前
共享精神应助Julien采纳,获得10
10秒前
Flower完成签到,获得积分10
10秒前
曼仔发布了新的文献求助10
11秒前
12秒前
刻苦天寿完成签到 ,获得积分10
13秒前
夔栀发布了新的文献求助10
13秒前
抱小熊睡觉完成签到,获得积分10
14秒前
justin完成签到,获得积分10
14秒前
陆仁嘉完成签到 ,获得积分10
14秒前
领导范儿应助XWH采纳,获得10
15秒前
16秒前
haan完成签到,获得积分10
16秒前
始于足下发布了新的文献求助10
16秒前
srui0825发布了新的文献求助10
17秒前
17秒前
17秒前
NexusExplorer应助上官问寒采纳,获得10
18秒前
18秒前
18秒前
19秒前
卑微的学牛马完成签到,获得积分10
21秒前
haan发布了新的文献求助30
21秒前
22秒前
涔雨完成签到,获得积分10
22秒前
23秒前
23秒前
南宫幻灵发布了新的文献求助10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745678
求助须知:如何正确求助?哪些是违规求助? 3288630
关于积分的说明 10059868
捐赠科研通 3004874
什么是DOI,文献DOI怎么找? 1649899
邀请新用户注册赠送积分活动 785612
科研通“疑难数据库(出版商)”最低求助积分说明 751180