MDLR: A Multi-Task Disentangled Learning Representations for unsupervised time series domain adaptation

计算机科学 分类器(UML) 人工智能 机器学习 推论 特征学习 域适应 不变(物理) 模式识别(心理学) 数据挖掘 数学 数学物理
作者
Yu Liu,Duantengchuan Li,Jian Wang,Bing Li,Bo Hang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103638-103638 被引量:3
标识
DOI:10.1016/j.ipm.2023.103638
摘要

Unsupervised Time Series Domain Adaptation (UTSDA) is a method for transferring information from a labeled source domain to an unlabeled target domain. The majority of existing UTSDA approaches focus on learning a domain-invariant feature space by reducing the gap between domains. However, the single-task representation learning methods have limited expressive capability, while ignoring the distinctive season-related and trend-related domain-invariant mechanisms across different domains. To address this, we introduce a novel approach, distinct from existing methods, through a theoretical analysis of UTSDA from the perspective of causal inference. This analysis establishes a solid theoretical foundation for identifying and modeling such consistent domain-invariant mechanisms, which is a significant advancement in the field. As a solution, we introduce MDLR, a multi-task disentangled learning framework designed for UTSDA. MDLR utilizes a dual-tower architecture with a trend feature extractor (TFE) and a season feature extractor (SFE) to extract trend-related and season-related information. This approach ensures that domain-invariant features at different scales can be better represented. Additionally, MDLR is designed with two tasks: a label classifier and a domain classifier, enabling iterative training of the entire model. The experiments conducted on three datasets, namely UCIHAR, WISDM, and HHAR_SA, along with visualization results, have shown the effectiveness of the proposed approach. The source code for our MDLR model is available to the public at https://github.com/MoranCoder95/MDLR/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小雷完成签到,获得积分10
1秒前
2秒前
Ava应助天才小熊猫采纳,获得10
2秒前
orixero应助bloodol3采纳,获得10
3秒前
LT发布了新的文献求助30
3秒前
aa完成签到,获得积分10
5秒前
Acadia发布了新的文献求助10
5秒前
蜜雪冰城发布了新的文献求助10
6秒前
6秒前
yu完成签到 ,获得积分10
7秒前
7秒前
9秒前
13秒前
13秒前
13秒前
app完成签到 ,获得积分10
13秒前
14秒前
852应助jianning采纳,获得10
15秒前
zyj完成签到,获得积分10
15秒前
16秒前
16秒前
ertredffg完成签到,获得积分10
16秒前
zzz发布了新的文献求助10
17秒前
18秒前
美味的薯片完成签到 ,获得积分10
18秒前
Accepted应助875728314采纳,获得10
18秒前
Joey完成签到 ,获得积分10
19秒前
20秒前
20秒前
无私尔风发布了新的文献求助10
22秒前
北侨发布了新的文献求助10
22秒前
23秒前
小饼干发布了新的文献求助10
23秒前
卢西奥发布了新的文献求助10
26秒前
Akim应助北侨采纳,获得30
26秒前
李健应助xx采纳,获得10
27秒前
27秒前
小雷发布了新的文献求助10
27秒前
28秒前
shanchuan发布了新的文献求助10
28秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790122
关于积分的说明 7793698
捐赠科研通 2446483
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601102