How Do Consumers Interact with Digital Expert Advice? Experimental Evidence from Health Insurance

产品(数学) 采购 营销 背景(考古学) 建议(编程) 业务 价值(数学) 消费者选择 广告 计算机科学 程序设计语言 几何学 古生物学 数学 生物 机器学习
作者
M. Kate Bundorf,Maria Polyakova,Ming Tai-Seale
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (11): 7617-7643 被引量:6
标识
DOI:10.1287/mnsc.2020.02453
摘要

Consumers increasingly use digital advice when making purchasing decisions. How do such tools change consumer behavior and what types of consumers are likely to use them? We examine these questions with a randomized controlled trial of digital expert advice in the context of prescription drug insurance. The intervention we study was effective at changing consumer choices. We propose that, conceptually, expert advice can affect consumer choices through two distinct channels: by updating consumer beliefs about product features (learning) and by influencing how much consumers value product features (interpretation). Using our trial data to estimate a model of consumer demand, we find that both channels are quantitatively important. Digital expert advice tools not only provide consumers with information, but also alter how consumers value product features. For example, consumers are willing to pay 14% less for a plan with the most popular brand and 37% less for an extra star rating when they incorporate digital expert advice on plan choice relative to only having information about product features. Further, we document substantial selection into the use of digital advice on two margins. Consumers who are inherently less active shoppers and those who we predict would have responded to advice more were less likely to demand it. Our results raise concerns regarding the ability of digital advice to alter consumer preferences as well as the distributional implications of greater access to digital expert advice. This paper was accepted by Stefan Scholtes, healthcare management. Funding: This work was supported by the National Institute on Aging [Grant K01AG059843] and the Patient-Centered Outcomes Research Institute [Grant CDR-1306-03598]. The project also received financial support from Stanford Innovation Funds. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2020.02453 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路灯完成签到,获得积分10
刚刚
刚刚
天天快乐应助超级亿先采纳,获得10
刚刚
大侠完成签到 ,获得积分10
1秒前
懒洋洋完成签到,获得积分10
1秒前
Hello应助落寞之云采纳,获得10
1秒前
小二郎应助活力的青枫采纳,获得10
1秒前
苏翰英发布了新的文献求助10
1秒前
橱窗发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
丽丽发布了新的文献求助10
2秒前
顾矜应助HHW采纳,获得10
2秒前
小小易完成签到,获得积分10
2秒前
诱导效应发布了新的文献求助10
2秒前
3秒前
luan完成签到,获得积分10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
LB应助科研通管家采纳,获得50
3秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
泥昵哒耶完成签到,获得积分10
4秒前
大个应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
changping应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
Hello应助十三采纳,获得10
6秒前
7秒前
难过曼冬完成签到 ,获得积分10
8秒前
小马甲应助wang5945采纳,获得10
8秒前
8秒前
PANYIAO完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321937
求助须知:如何正确求助?哪些是违规求助? 4463561
关于积分的说明 13890461
捐赠科研通 4354764
什么是DOI,文献DOI怎么找? 2392002
邀请新用户注册赠送积分活动 1385582
关于科研通互助平台的介绍 1355331