How Do Consumers Interact with Digital Expert Advice? Experimental Evidence from Health Insurance

产品(数学) 采购 营销 背景(考古学) 建议(编程) 业务 价值(数学) 消费者选择 广告 计算机科学 程序设计语言 几何学 古生物学 数学 生物 机器学习
作者
M. Kate Bundorf,Maria Polyakova,Ming Tai-Seale
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2020.02453
摘要

Consumers increasingly use digital advice when making purchasing decisions. How do such tools change consumer behavior and what types of consumers are likely to use them? We examine these questions with a randomized controlled trial of digital expert advice in the context of prescription drug insurance. The intervention we study was effective at changing consumer choices. We propose that, conceptually, expert advice can affect consumer choices through two distinct channels: by updating consumer beliefs about product features (learning) and by influencing how much consumers value product features (interpretation). Using our trial data to estimate a model of consumer demand, we find that both channels are quantitatively important. Digital expert advice tools not only provide consumers with information, but also alter how consumers value product features. For example, consumers are willing to pay 14% less for a plan with the most popular brand and 37% less for an extra star rating when they incorporate digital expert advice on plan choice relative to only having information about product features. Further, we document substantial selection into the use of digital advice on two margins. Consumers who are inherently less active shoppers and those who we predict would have responded to advice more were less likely to demand it. Our results raise concerns regarding the ability of digital advice to alter consumer preferences as well as the distributional implications of greater access to digital expert advice. This paper was accepted by Stefan Scholtes, healthcare management. Funding: This work was supported by the National Institute on Aging [Grant K01AG059843] and the Patient-Centered Outcomes Research Institute [Grant CDR-1306-03598]. The project also received financial support from Stanford Innovation Funds. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2020.02453 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GuangboXia完成签到,获得积分10
5秒前
羊白玉完成签到 ,获得积分10
7秒前
鞘皮完成签到,获得积分10
11秒前
alixy完成签到,获得积分10
14秒前
xinjiasuki完成签到 ,获得积分10
17秒前
阿浮完成签到 ,获得积分10
19秒前
00完成签到 ,获得积分10
21秒前
脱壳金蝉完成签到,获得积分10
21秒前
韧迹完成签到 ,获得积分10
23秒前
负责的寒梅完成签到 ,获得积分10
27秒前
帅气的海露完成签到 ,获得积分10
29秒前
weng完成签到,获得积分10
29秒前
嘻哈学习完成签到,获得积分10
34秒前
烟熏妆的猫完成签到 ,获得积分10
41秒前
LXZ完成签到,获得积分10
41秒前
电子屎壳郎完成签到,获得积分10
47秒前
高大的莞完成签到 ,获得积分10
47秒前
欢喜梦凡完成签到 ,获得积分10
49秒前
细心健柏完成签到 ,获得积分10
49秒前
曹文鹏完成签到 ,获得积分10
52秒前
大喜子完成签到 ,获得积分10
54秒前
lkk183完成签到 ,获得积分10
54秒前
干净的天奇完成签到 ,获得积分10
56秒前
追寻的从云完成签到 ,获得积分10
1分钟前
开放素完成签到 ,获得积分10
1分钟前
Ivan完成签到 ,获得积分10
1分钟前
1分钟前
糖宝完成签到 ,获得积分10
1分钟前
Ricky小强发布了新的文献求助10
1分钟前
执念完成签到 ,获得积分10
1分钟前
内向的白玉完成签到 ,获得积分10
1分钟前
朱奕韬发布了新的文献求助10
1分钟前
GealAntS完成签到,获得积分0
1分钟前
Eason Liu完成签到,获得积分10
1分钟前
动听的飞松完成签到 ,获得积分10
1分钟前
1分钟前
跳跃太清完成签到 ,获得积分10
1分钟前
南宫若翠发布了新的文献求助20
1分钟前
mzrrong完成签到 ,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146916
求助须知:如何正确求助?哪些是违规求助? 2798171
关于积分的说明 7826798
捐赠科研通 2454724
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565