How Do Consumers Interact with Digital Expert Advice? Experimental Evidence from Health Insurance

产品(数学) 采购 营销 背景(考古学) 建议(编程) 业务 价值(数学) 消费者选择 广告 计算机科学 程序设计语言 几何学 古生物学 数学 生物 机器学习
作者
M. Kate Bundorf,Maria Polyakova,Ming Tai-Seale
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (11): 7617-7643 被引量:4
标识
DOI:10.1287/mnsc.2020.02453
摘要

Consumers increasingly use digital advice when making purchasing decisions. How do such tools change consumer behavior and what types of consumers are likely to use them? We examine these questions with a randomized controlled trial of digital expert advice in the context of prescription drug insurance. The intervention we study was effective at changing consumer choices. We propose that, conceptually, expert advice can affect consumer choices through two distinct channels: by updating consumer beliefs about product features (learning) and by influencing how much consumers value product features (interpretation). Using our trial data to estimate a model of consumer demand, we find that both channels are quantitatively important. Digital expert advice tools not only provide consumers with information, but also alter how consumers value product features. For example, consumers are willing to pay 14% less for a plan with the most popular brand and 37% less for an extra star rating when they incorporate digital expert advice on plan choice relative to only having information about product features. Further, we document substantial selection into the use of digital advice on two margins. Consumers who are inherently less active shoppers and those who we predict would have responded to advice more were less likely to demand it. Our results raise concerns regarding the ability of digital advice to alter consumer preferences as well as the distributional implications of greater access to digital expert advice. This paper was accepted by Stefan Scholtes, healthcare management. Funding: This work was supported by the National Institute on Aging [Grant K01AG059843] and the Patient-Centered Outcomes Research Institute [Grant CDR-1306-03598]. The project also received financial support from Stanford Innovation Funds. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2020.02453 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助橙子fy16_采纳,获得10
1秒前
LGJ完成签到,获得积分10
1秒前
wang完成签到,获得积分10
3秒前
4秒前
5秒前
脑洞疼应助Blue_Pig采纳,获得10
7秒前
8秒前
Akim应助危机的尔蝶采纳,获得10
9秒前
SONG发布了新的文献求助50
9秒前
明理雨筠发布了新的文献求助10
10秒前
小刘一定能读C9博完成签到 ,获得积分10
11秒前
1097完成签到 ,获得积分10
12秒前
缚大哥发布了新的文献求助10
13秒前
Rollei驳回了Hello应助
13秒前
tsntn完成签到,获得积分10
13秒前
wenbo完成签到,获得积分0
13秒前
14秒前
勤奋弋完成签到,获得积分10
17秒前
无名欧文完成签到,获得积分10
18秒前
20秒前
虚心海燕发布了新的文献求助10
20秒前
黄啊涛关注了科研通微信公众号
20秒前
20秒前
JamesPei应助Rainbow采纳,获得10
21秒前
一只科研狗完成签到,获得积分10
21秒前
pp0118完成签到 ,获得积分10
21秒前
余呀余完成签到 ,获得积分10
22秒前
23秒前
善良易文关注了科研通微信公众号
23秒前
23秒前
瑶一瑶发布了新的文献求助10
24秒前
yhy完成签到,获得积分10
24秒前
纯真雁菱完成签到,获得积分10
24秒前
sun发布了新的文献求助10
24秒前
w.h完成签到,获得积分10
25秒前
25秒前
Schmoo发布了新的文献求助10
25秒前
赘婿应助Zxc采纳,获得10
25秒前
明理雨筠完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849