A Lightweight Reinforcement Learning-Based Real-Time Path Planning Method for Unmanned Aerial Vehicles

强化学习 计算机科学 稳健性(进化) 运动规划 人工智能 适应(眼睛) 实时计算 分布式计算 机器学习 机器人 生物化学 光学 化学 物理 基因
作者
Meng Xi,Huiao Dai,Jingyi He,Wenjie Li,Jiabao Wen,Shuai Xiao,Jiachen Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21061-21071 被引量:10
标识
DOI:10.1109/jiot.2024.3350525
摘要

The Unmanned Aerial Vehicles (UAVs) are competent to perform a variety of applications, possessing great potential and promise. The Deep Neural Network (DNN) technology has enabled the UAV-assisted paradigm, accelerated the construction of smart cities, and propelled the development of the Internet of Things (IoT). UAVs play an increasingly important role in various applications, such as surveillance, environmental monitoring, emergency rescue, supplies delivery, for which a robust path planning technique is the foundation and prerequisite. However, existing methods lack comprehensive consideration of the complicated urban environment and do not provide an overall assessment of the robustness and generalization. Meanwhile, due to the resource constraints and hardware limitations of UAVs, the complexity of deploying the network needs to be reduced. This paper proposes a lightweight, reinforcement learning-based real-time path planning method for UAVs, Adaptive Soft Actor-Critic algorithm (ASAC), which optimizing training process, network architecture, and algorithmic models. First of all, we establish a framework of global training and local adaptation, where the structured environment model is constructed for interaction, and local dynamically varying information aids in improving generalization. Secondly, ASAC introduces a cross-layer connection approach that passes the original state information into the higher layers to avoid feature loss and improve learning efficiency. Finally, we propose an adaptive temperature coefficient, which flexibly adjusts the exploration probability of UAVs with the training phase and experience data accumulation. In addition, a series of comparison experiments have been conducted in conjunction with practical application requirements, and the results have fully proved the favorable superiority of ASAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SALI发布了新的文献求助10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
HCLonely应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
风中的采波应助陈启10000采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
HCLonely应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
HCLonely应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
wwsbb完成签到,获得积分10
3秒前
善学以致用应助ee采纳,获得10
3秒前
3秒前
研友_VZG7GZ应助哈基米采纳,获得10
4秒前
田様应助ruuuu采纳,获得30
6秒前
jia完成签到,获得积分10
8秒前
RYAN完成签到 ,获得积分10
9秒前
赘婿应助1234采纳,获得10
10秒前
小蘑菇应助whm采纳,获得10
10秒前
车水完成签到 ,获得积分10
11秒前
充电宝应助哈哈哈哈采纳,获得10
12秒前
asuka完成签到,获得积分20
13秒前
zero完成签到,获得积分10
14秒前
14秒前
chunb完成签到,获得积分10
14秒前
14秒前
15秒前
哎哟可爱完成签到,获得积分10
15秒前
小邓完成签到,获得积分10
16秒前
结实的青荷完成签到,获得积分10
17秒前
17秒前
18秒前
从容的白容完成签到,获得积分10
18秒前
19秒前
Felicia发布了新的文献求助10
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236198
求助须知:如何正确求助?哪些是违规求助? 2881908
关于积分的说明 8224330
捐赠科研通 2549909
什么是DOI,文献DOI怎么找? 1378738
科研通“疑难数据库(出版商)”最低求助积分说明 648465
邀请新用户注册赠送积分活动 623955