已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Lightweight Reinforcement-Learning-Based Real-Time Path-Planning Method for Unmanned Aerial Vehicles

强化学习 计算机科学 稳健性(进化) 运动规划 人工智能 适应(眼睛) 实时计算 分布式计算 机器学习 机器人 生物化学 光学 化学 物理 基因
作者
Meng Xi,Huiao Dai,Jingyi He,Wenjie Li,Jiabao Wen,Shuai Xiao,Jiachen Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21061-21071 被引量:54
标识
DOI:10.1109/jiot.2024.3350525
摘要

The Unmanned Aerial Vehicles (UAVs) are competent to perform a variety of applications, possessing great potential and promise. The Deep Neural Network (DNN) technology has enabled the UAV-assisted paradigm, accelerated the construction of smart cities, and propelled the development of the Internet of Things (IoT). UAVs play an increasingly important role in various applications, such as surveillance, environmental monitoring, emergency rescue, supplies delivery, for which a robust path planning technique is the foundation and prerequisite. However, existing methods lack comprehensive consideration of the complicated urban environment and do not provide an overall assessment of the robustness and generalization. Meanwhile, due to the resource constraints and hardware limitations of UAVs, the complexity of deploying the network needs to be reduced. This paper proposes a lightweight, reinforcement learning-based real-time path planning method for UAVs, Adaptive Soft Actor-Critic algorithm (ASAC), which optimizing training process, network architecture, and algorithmic models. First of all, we establish a framework of global training and local adaptation, where the structured environment model is constructed for interaction, and local dynamically varying information aids in improving generalization. Secondly, ASAC introduces a cross-layer connection approach that passes the original state information into the higher layers to avoid feature loss and improve learning efficiency. Finally, we propose an adaptive temperature coefficient, which flexibly adjusts the exploration probability of UAVs with the training phase and experience data accumulation. In addition, a series of comparison experiments have been conducted in conjunction with practical application requirements, and the results have fully proved the favorable superiority of ASAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_VZG7GZ应助寰宇采纳,获得10
1秒前
无解发布了新的文献求助30
1秒前
云山约发布了新的文献求助10
1秒前
顾矜应助顺心致远采纳,获得10
2秒前
2秒前
ultramarine关注了科研通微信公众号
2秒前
yao发布了新的文献求助10
3秒前
basil完成签到,获得积分10
3秒前
科目三应助韩1234采纳,获得10
4秒前
鑫淼完成签到,获得积分10
4秒前
成就的平文完成签到 ,获得积分10
5秒前
核桃应助gjww采纳,获得100
7秒前
7秒前
8秒前
科研通AI6应助踏实的12采纳,获得10
9秒前
言灵鱼发布了新的文献求助10
9秒前
朴素的愫完成签到 ,获得积分10
10秒前
CodeCraft应助dokki采纳,获得10
10秒前
超帅远望发布了新的文献求助10
11秒前
橘子发布了新的文献求助10
11秒前
13秒前
科研通AI6应助科研菜鸟采纳,获得10
13秒前
14秒前
何yezi完成签到 ,获得积分10
14秒前
尤里有气发布了新的文献求助10
15秒前
LL完成签到,获得积分10
15秒前
16秒前
panana发布了新的文献求助10
16秒前
17秒前
275231完成签到,获得积分10
19秒前
keroroleung发布了新的文献求助30
19秒前
21秒前
核桃应助gjww采纳,获得100
21秒前
21秒前
無端发布了新的文献求助10
21秒前
尤里有气发布了新的文献求助10
22秒前
22秒前
haixin发布了新的文献求助10
25秒前
huaihui0920发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394272
求助须知:如何正确求助?哪些是违规求助? 4515528
关于积分的说明 14054733
捐赠科研通 4426779
什么是DOI,文献DOI怎么找? 2431479
邀请新用户注册赠送积分活动 1423634
关于科研通互助平台的介绍 1402578