A Lightweight Reinforcement-Learning-Based Real-Time Path-Planning Method for Unmanned Aerial Vehicles

强化学习 计算机科学 稳健性(进化) 运动规划 人工智能 适应(眼睛) 实时计算 分布式计算 机器学习 机器人 生物化学 光学 化学 物理 基因
作者
Meng Xi,Huiao Dai,Jingyi He,Wenjie Li,Jiabao Wen,Shuai Xiao,Jiachen Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21061-21071 被引量:20
标识
DOI:10.1109/jiot.2024.3350525
摘要

The Unmanned Aerial Vehicles (UAVs) are competent to perform a variety of applications, possessing great potential and promise. The Deep Neural Network (DNN) technology has enabled the UAV-assisted paradigm, accelerated the construction of smart cities, and propelled the development of the Internet of Things (IoT). UAVs play an increasingly important role in various applications, such as surveillance, environmental monitoring, emergency rescue, supplies delivery, for which a robust path planning technique is the foundation and prerequisite. However, existing methods lack comprehensive consideration of the complicated urban environment and do not provide an overall assessment of the robustness and generalization. Meanwhile, due to the resource constraints and hardware limitations of UAVs, the complexity of deploying the network needs to be reduced. This paper proposes a lightweight, reinforcement learning-based real-time path planning method for UAVs, Adaptive Soft Actor-Critic algorithm (ASAC), which optimizing training process, network architecture, and algorithmic models. First of all, we establish a framework of global training and local adaptation, where the structured environment model is constructed for interaction, and local dynamically varying information aids in improving generalization. Secondly, ASAC introduces a cross-layer connection approach that passes the original state information into the higher layers to avoid feature loss and improve learning efficiency. Finally, we propose an adaptive temperature coefficient, which flexibly adjusts the exploration probability of UAVs with the training phase and experience data accumulation. In addition, a series of comparison experiments have been conducted in conjunction with practical application requirements, and the results have fully proved the favorable superiority of ASAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Charles完成签到,获得积分10
2秒前
小彤完成签到 ,获得积分10
2秒前
sevenlalala完成签到,获得积分10
3秒前
淡然的新烟完成签到 ,获得积分10
3秒前
Jan完成签到,获得积分10
4秒前
打打应助phenory采纳,获得10
4秒前
酷酷阑香完成签到,获得积分10
4秒前
子虚一尘完成签到,获得积分10
5秒前
Linsey完成签到,获得积分10
5秒前
别致的苹果派完成签到,获得积分10
5秒前
坛子完成签到,获得积分10
6秒前
断水断粮的科研民工完成签到,获得积分10
7秒前
7秒前
7秒前
木木完成签到,获得积分10
7秒前
ttyhtg完成签到,获得积分10
7秒前
马大翔完成签到,获得积分0
8秒前
Kismet发布了新的文献求助10
8秒前
arzw完成签到,获得积分10
8秒前
白桃乌龙完成签到,获得积分10
8秒前
晴空完成签到,获得积分10
9秒前
S月小小完成签到,获得积分10
10秒前
xiaoxiaoli发布了新的文献求助10
11秒前
不辞完成签到,获得积分10
11秒前
单薄冬天完成签到 ,获得积分10
11秒前
11秒前
cahcaiaihua发布了新的文献求助10
12秒前
冷水完成签到,获得积分10
12秒前
A溶大美噶完成签到,获得积分10
12秒前
12秒前
Jess2147完成签到,获得积分10
13秒前
makenemore完成签到,获得积分10
13秒前
尊敬的驳完成签到,获得积分10
14秒前
Leo完成签到,获得积分10
15秒前
曹中明完成签到,获得积分10
15秒前
迅速奄完成签到 ,获得积分10
15秒前
善学以致用应助敬老院N号采纳,获得40
15秒前
相忘于江湖完成签到,获得积分10
16秒前
phenory发布了新的文献求助10
16秒前
GJL完成签到,获得积分10
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3742459
求助须知:如何正确求助?哪些是违规求助? 3285014
关于积分的说明 10042803
捐赠科研通 3001641
什么是DOI,文献DOI怎么找? 1647494
邀请新用户注册赠送积分活动 784239
科研通“疑难数据库(出版商)”最低求助积分说明 750676