亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Lightweight Reinforcement-Learning-Based Real-Time Path-Planning Method for Unmanned Aerial Vehicles

强化学习 计算机科学 稳健性(进化) 运动规划 人工智能 适应(眼睛) 实时计算 分布式计算 机器学习 机器人 生物化学 光学 化学 物理 基因
作者
Meng Xi,Huiao Dai,Jingyi He,Wenjie Li,Jiabao Wen,Shuai Xiao,Jiachen Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21061-21071 被引量:38
标识
DOI:10.1109/jiot.2024.3350525
摘要

The Unmanned Aerial Vehicles (UAVs) are competent to perform a variety of applications, possessing great potential and promise. The Deep Neural Network (DNN) technology has enabled the UAV-assisted paradigm, accelerated the construction of smart cities, and propelled the development of the Internet of Things (IoT). UAVs play an increasingly important role in various applications, such as surveillance, environmental monitoring, emergency rescue, supplies delivery, for which a robust path planning technique is the foundation and prerequisite. However, existing methods lack comprehensive consideration of the complicated urban environment and do not provide an overall assessment of the robustness and generalization. Meanwhile, due to the resource constraints and hardware limitations of UAVs, the complexity of deploying the network needs to be reduced. This paper proposes a lightweight, reinforcement learning-based real-time path planning method for UAVs, Adaptive Soft Actor-Critic algorithm (ASAC), which optimizing training process, network architecture, and algorithmic models. First of all, we establish a framework of global training and local adaptation, where the structured environment model is constructed for interaction, and local dynamically varying information aids in improving generalization. Secondly, ASAC introduces a cross-layer connection approach that passes the original state information into the higher layers to avoid feature loss and improve learning efficiency. Finally, we propose an adaptive temperature coefficient, which flexibly adjusts the exploration probability of UAVs with the training phase and experience data accumulation. In addition, a series of comparison experiments have been conducted in conjunction with practical application requirements, and the results have fully proved the favorable superiority of ASAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
10秒前
朴素易梦完成签到,获得积分10
26秒前
小马甲应助John采纳,获得10
1分钟前
kuoping完成签到,获得积分0
1分钟前
1分钟前
John完成签到,获得积分10
1分钟前
John发布了新的文献求助10
1分钟前
Ji完成签到,获得积分10
1分钟前
阔达白凡完成签到,获得积分10
1分钟前
桥西小河完成签到 ,获得积分10
1分钟前
TongKY完成签到 ,获得积分10
1分钟前
1分钟前
美丽的冰枫完成签到,获得积分10
1分钟前
义气的断秋完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助50
2分钟前
2分钟前
shee发布了新的文献求助10
2分钟前
2分钟前
研友_892kOL完成签到 ,获得积分10
2分钟前
shee完成签到,获得积分20
2分钟前
2分钟前
天天快乐应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
003完成签到,获得积分10
4分钟前
科研兵发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
我是老大应助科研兵采纳,获得10
4分钟前
001完成签到,获得积分10
4分钟前
昭荃完成签到 ,获得积分0
5分钟前
馆长完成签到,获得积分0
6分钟前
量子星尘发布了新的文献求助10
6分钟前
WebCasa完成签到,获得积分10
6分钟前
Lny应助科研通管家采纳,获得10
7分钟前
Lny应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
Lny应助科研通管家采纳,获得10
7分钟前
7分钟前
毛毛完成签到,获得积分10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827