A Lightweight Reinforcement-Learning-Based Real-Time Path-Planning Method for Unmanned Aerial Vehicles

强化学习 计算机科学 稳健性(进化) 运动规划 人工智能 适应(眼睛) 实时计算 分布式计算 机器学习 机器人 生物化学 光学 化学 物理 基因
作者
Meng Xi,Huiao Dai,Jingyi He,Wenjie Li,Jiabao Wen,Shuai Xiao,Jiachen Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 21061-21071 被引量:24
标识
DOI:10.1109/jiot.2024.3350525
摘要

The Unmanned Aerial Vehicles (UAVs) are competent to perform a variety of applications, possessing great potential and promise. The Deep Neural Network (DNN) technology has enabled the UAV-assisted paradigm, accelerated the construction of smart cities, and propelled the development of the Internet of Things (IoT). UAVs play an increasingly important role in various applications, such as surveillance, environmental monitoring, emergency rescue, supplies delivery, for which a robust path planning technique is the foundation and prerequisite. However, existing methods lack comprehensive consideration of the complicated urban environment and do not provide an overall assessment of the robustness and generalization. Meanwhile, due to the resource constraints and hardware limitations of UAVs, the complexity of deploying the network needs to be reduced. This paper proposes a lightweight, reinforcement learning-based real-time path planning method for UAVs, Adaptive Soft Actor-Critic algorithm (ASAC), which optimizing training process, network architecture, and algorithmic models. First of all, we establish a framework of global training and local adaptation, where the structured environment model is constructed for interaction, and local dynamically varying information aids in improving generalization. Secondly, ASAC introduces a cross-layer connection approach that passes the original state information into the higher layers to avoid feature loss and improve learning efficiency. Finally, we propose an adaptive temperature coefficient, which flexibly adjusts the exploration probability of UAVs with the training phase and experience data accumulation. In addition, a series of comparison experiments have been conducted in conjunction with practical application requirements, and the results have fully proved the favorable superiority of ASAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宝玉发布了新的文献求助10
2秒前
端庄代荷完成签到 ,获得积分10
4秒前
陶醉的翠霜完成签到 ,获得积分10
6秒前
可爱的函函应助宝玉采纳,获得10
8秒前
现代大神完成签到,获得积分10
9秒前
YHJX发布了新的文献求助10
10秒前
11秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
11秒前
123456完成签到 ,获得积分10
12秒前
clock完成签到 ,获得积分10
12秒前
shuangshuang完成签到,获得积分10
13秒前
研友_85yrY8发布了新的文献求助10
14秒前
20秒前
风趣的梦露完成签到 ,获得积分10
21秒前
灯灯完成签到,获得积分10
21秒前
刘泽璇完成签到,获得积分10
26秒前
小学渣关注了科研通微信公众号
27秒前
周周南完成签到 ,获得积分10
31秒前
苏苏完成签到,获得积分10
33秒前
37秒前
Smiling完成签到 ,获得积分10
38秒前
Alan完成签到 ,获得积分10
42秒前
42秒前
hm完成签到,获得积分10
43秒前
渔渔完成签到 ,获得积分10
48秒前
lailai完成签到 ,获得积分10
50秒前
Cheng完成签到 ,获得积分0
54秒前
天天快乐应助科研通管家采纳,获得10
57秒前
FashionBoy应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
leaolf应助科研通管家采纳,获得10
57秒前
木偶完成签到 ,获得积分10
59秒前
KaiZI完成签到 ,获得积分10
1分钟前
下雨发布了新的文献求助10
1分钟前
打打应助王姗and帅白采纳,获得10
1分钟前
小蘑菇应助小学渣采纳,获得10
1分钟前
jay完成签到 ,获得积分10
1分钟前
wlj完成签到 ,获得积分10
1分钟前
科研王子完成签到,获得积分10
1分钟前
无限的山水完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963294
求助须知:如何正确求助?哪些是违规求助? 3509133
关于积分的说明 11145480
捐赠科研通 3242356
什么是DOI,文献DOI怎么找? 1791906
邀请新用户注册赠送积分活动 873200
科研通“疑难数据库(出版商)”最低求助积分说明 803659