STGAFormer: Spatial–temporal Gated Attention Transformer based Graph Neural Network for traffic flow forecasting

计算机科学 邻接表 编码器 阈值 变压器 人工智能 数据挖掘 邻接矩阵 图形 机器学习 算法 理论计算机科学 物理 量子力学 电压 图像(数学) 操作系统
作者
Zili Geng,Jie Xu,Rongsen Wu,Changming Zhao,Jin Wang,Yunji Li,Chenlin Zhang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:105: 102228-102228 被引量:31
标识
DOI:10.1016/j.inffus.2024.102228
摘要

Traffic flow prediction is a critical component of Intelligent Transportation Systems (ITS). However, the dynamic temporal variations in traffic flow, especially in potential occurrence of unexpected incidents, pose challenges to the prediction of traffic flow. This paper proposes a Spatial–temporal Gated Attention Transformer (STGAFormer) model based Graph Neural Network(GNN), leveraging the encoder architecture of the transformer. The gated temporal self-attention in the model, a novel module, can improve the model’s ability to make long-term predictions and handle sudden traffic incidents by enhancing the extraction of both local and global temporal features. Additionally, this paper proposes a distance spatial self-attention module to extract spatial features, which employs thresholding to selectively identify crucial features from both nearby and distant regions. In this way, the model’s ability to assimilate critical spatial information is promoted. Moreover, our model incorporates a diverse range of inputs, including traffic flow attributes, periodicity, proximity adjacency matrix, and adaptive adjacency matrix. Experiments from four real datasets demonstrate that STGAFormer achieves state-of-the-art performance, especially the MAE value of the PeMS08 dataset experiment is improved by 3.82%. This method offers valuable insights and robust support for future transportation planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助小雪糕采纳,获得10
1秒前
彳亍发布了新的文献求助20
2秒前
ygh完成签到,获得积分10
2秒前
3秒前
hanhan完成签到 ,获得积分0
4秒前
7秒前
小鸟芋圆露露完成签到 ,获得积分10
7秒前
BOLI发布了新的文献求助10
7秒前
今天学习了嘛完成签到,获得积分10
7秒前
Lee完成签到,获得积分10
8秒前
8秒前
jacki完成签到,获得积分10
8秒前
9秒前
pan完成签到,获得积分10
12秒前
12秒前
PZL发布了新的文献求助10
13秒前
科研通AI2S应助shadow采纳,获得10
13秒前
梦红尘发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
rosa完成签到,获得积分10
16秒前
17秒前
元气少女猪刚鬣完成签到,获得积分10
17秒前
17秒前
yang发布了新的文献求助10
18秒前
20秒前
布鲁斯盖完成签到,获得积分10
20秒前
Foch发布了新的文献求助10
21秒前
21秒前
22秒前
善学以致用应助Rason采纳,获得10
22秒前
22秒前
23秒前
24秒前
24秒前
科研通AI2S应助jitianxing采纳,获得10
24秒前
hmlee123完成签到,获得积分10
25秒前
小雪糕发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998784
求助须知:如何正确求助?哪些是违规求助? 3538262
关于积分的说明 11273791
捐赠科研通 3277260
什么是DOI,文献DOI怎么找? 1807481
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075